

TI-Nspire[™]/TI-Nspire[™] CX Reference Guide

This guidebook applies to TI-Nspire™ software version 3.2. To obtain the latest version of the documentation, go to *education.ti.com/guides*.

Important Information

Except as otherwise expressly stated in the License that accompanies a program, Texas Instruments makes no warranty, either express or implied, including but not limited to any implied warranties of merchantability and fitness for a particular purpose, regarding any programs or book materials and makes such materials available solely on an "as-is" basis. In no event shall Texas Instruments be liable to anyone for special, collateral, incidental, or consequential damages in connection with or arising out of the purchase or use of these materials, and the sole and exclusive liability of Texas Instruments, regardless of the form of action, shall not exceed the amount set forth in the license for the program. Moreover, Texas Instruments shall not be liable for any claim of any kind whatsoever against the use of these materials by any other party.

License

Please see the complete license installed in
C:\Program Files\TI Education\<TI-Nspire™ Product Name>\license.

© 2006 - 2012 Texas Instruments Incorporated

Contents

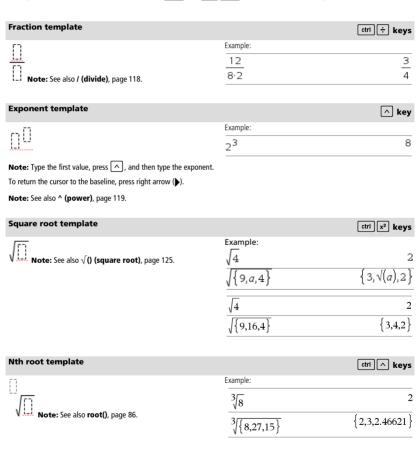
Expression Templates	C	
Fraction template1	ceiling() 1	14
Exponent template1	centralDiff() 1	!
Square root template1	char() 1	!
Nth root template1	χ^2 2way 1	ı.
e exponent template2	χ^2 Cdf()	(
Log template2	χ^2 GOF	1
Piecewise template (2-piece)2	χ^2 Pdf()	ı
Piecewise template (N-piece)2	ČlearAZ 1	1
System of 2 equations template3	ClrErr 1	1
System of N equations template3	colAugment() 1	
Absolute value template3	colDim() 1	
dd°mm'ss.ss" template3	colNorm() 1	
Matrix template (2 x 2)3	completeSquare() 1	
Matrix template (1 x 2)4	conj() 1	
Matrix template (2 x 1)4	constructMat() 1	
Matrix template (m x n)4	CopyVar 1	
Sum template (Σ)4	corrMat() 1	
Product template (П)4	cos() 1	
First derivative template5	cos ⁻¹ ()	
Second derivative template5	cosh()	
Definite integral template5	cosh ⁻¹ ()	
Alphabetical Listing	cot()	
Alphabetical Eisting	cot ⁻¹ ()	
Α	coth()	
	coth ⁻¹ ()	
abs()	count()	
and6	cPolyRoots()	
angle()7	crossP()	
ANOVA7	csc()	
ANOVA2way8	csc ⁻¹ ()	
Ans9	csch()	
approx()10	csch ⁻¹ ()	
DapproxFraction()10	CubicReg	
approxRational()10	cumulativeSum()	
arccos()10	Cycle2	
arccosh()10	▶Cylind2	
arccot()10	_	
arccoth()11	D	
arccsc()11	dbd() 2	2(
arccsch()11	▶DD2	2
arcsec()11	▶Decimal2	-
arcsech()11	Define2	
arcsin()11	Define LibPriv2	
arcsinh()11	Define LibPub2	
arctan()11	deltaList()	
arctanh()11	DelVar2	
augment()11	delVoid()2	
avgRC()12	det()	
В	diag()3	
_	dim()	
bal()12	Disp	
▶Base2	DMS	
▶Base10	dotP()	5
▶Base16	E	
binomCdf()14		
	200	, .
binomPdf()14	e^()	

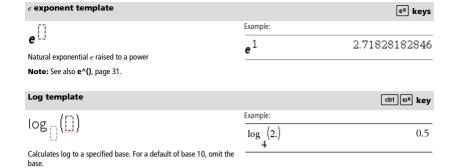
eigVc()32	isVoid()	49
eigVl()32	V	
Else32	L	
		-^
Elself33	Lbl	
EndFor33	lcm()	
EndFunc33	left()	50
EndIf33	libShortcut()	51
EndLoop33	LinRegBx	
EndPrgm33	LinRegMx	
EndTry33	LinRegtIntervals	
EndWhile33	LinRegtTest	54
euler()34	linSolve()	
Exit34	ΔList()	
exp()35	list•mat()	
expr()35	In()	55
ExpReg35	LnReg	56
1 -5	Local	
F	Lock	
-		
factor()36	log()	
FCdf()36	Logistic	58
Fill36	LogisticD	59
FiveNumSummary37	Loop	
floor()37	LU	
	LU	οU
For38	NA.	
format()38	M	
fPart()38	mat list()	60
FPdf()38	max()	
	mean()	
freqTable list()39		
frequency()39	median()	
FTest_2Samp39	MedMed6	62
Func40	mid()	62
	min()	53
	min()	
G	mirr()	63
G gcd()40	mirr()	63 64
G	mirr()	63 64
G gcd()40 geomCdf()41	mirr()	63 64 64
G gcd()	mirr()	63 64 64 64
G gcd() 40 geomCdf() 41 geomPdf() 41 getDenom() 41	mirr()	63 64 64 64
G gcd() 40 geomCdf() 41 geomPdf() 41 getDenom() 41 getLangInfo() 41	mirr()	63 64 64 64 65
G gcd() 40 geomCdf() 41 geomPdf() 41 getDenom() 41 getLangInfo() 41 getLockInfo() 42	mirr()	63 64 64 64 65
G gcd() 40 geomCdf() 41 geomPdf() 41 getDenom() 41 getLangInfo() 41 getLockInfo() 42	mirr()	63 64 64 64 65
G gcd() 40 geomCdf() 41 geomPdf() 41 getDenom() 41 getLangInfo() 41 getLockInfo() 42 getMode() 42	mirr()	63 64 64 64 65
G gcd() 40 geomCdf() 41 geomPdf() 41 getDenom() 41 getLangInfo() 41 getLockInfo() 42 getMode() 42 getNum() 43	mirr() 6 mod() 6 mRow() 6 mRowAdd() 6 MultReg 6 MultRegIntervals 6 MultRegTests 6	63 64 64 64 65 65
G gcd() 40 geomCdf() 41 geomPdf() 41 getDenom() 41 getLangInfo() 41 getLockInfo() 42 getMode() 42 getNum() 43 getType() 43	mirr()	63 64 64 65 65
G gcd() 40 geomCdf() 41 geomPdf() 41 getDenom() 41 getLangInfo() 41 getLockInfo() 42 getMode() 42 getNum() 43 getType() 43 getVarInfo() 43	mirr()	63 64 64 65 65 66
G gcd() 40 geomCdf() 41 geomPdf() 41 getDenom() 41 getLangInfo() 41 getLokInfo() 42 getMode() 42 getNum() 43 getType() 43 getVarInfo() 43 Goto 44	mirr()	63 64 64 65 65 66 67
G gcd() 40 geomCdf() 41 geomPdf() 41 getDenom() 41 getLangInfo() 41 getLockInfo() 42 getMode() 42 getNum() 43 getType() 43 getVarInfo() 43	mirr()	63 64 64 65 65 66 67
G gcd() 40 geomCdf() 41 geomPdf() 41 getDenom() 41 getLangInfo() 41 getLokInfo() 42 getMode() 42 getNum() 43 getType() 43 getVarInfo() 43 Goto 44	mirr()	63 64 64 65 65 67 67
G gcd() 40 geomCdf() 41 geomPdf() 41 getDenom() 41 getLangInfo() 41 getLokInfo() 42 getMode() 42 getNum() 43 getType() 43 getVarInfo() 43 Goto 44	mirr()	63 64 64 64 65 67 67 67
G gcd() 40 geomCdf() 41 geomPdf() 41 getDenom() 41 getLangInfo() 41 getMode() 42 getNum() 43 getType() 43 getVarInfo() 43 Goto 44 PGrad 44	mirr()	63 64 64 64 65 67 67 68 68
G gcd() 40 geomCdf() 41 geomPdf() 41 getDenom() 41 getLangInfo() 41 getLockInfo() 42 getNum() 43 getType() 43 getVarInfo() 43 Goto 44 ▶Grad 44 I identity() 45	mirr()	63 64 64 64 65 67 67 68 68
G gcd() 40 geomCdf() 41 geomPdf() 41 getDenom() 41 getLangInfo() 42 getMode() 42 getNum() 43 getVarlnfo() 43 Goto 44 Forad 44 I identity() 45 If 45	mirr()	63 64 64 65 67 67 68 68 68
G gcd() 40 geomCdf() 41 geomPdf() 41 getDenom() 41 getLangInfo() 42 getMode() 42 getNum() 43 getVarlnfo() 43 Goto 44 Forad 44 I identity() 45 If 45	mirr()	63 64 64 65 67 67 68 68 68
G gcd() 40 geomCdf() 41 geomPdf() 41 getDenom() 41 getLangInfo() 42 getMode() 42 getNum() 43 getYype() 43 getVarInfo() 43 Goto 44 ▶Grad 44 I identity() 45 if 45 ifFn() 46	mirr()	63 64 64 64 65 67 67 68 68 68 68
G gcd() 40 geomCdf() 41 geomPdf() 41 getDenom() 41 getLangInfo() 42 getMode() 42 getNum() 43 getType() 43 getVarInfo() 43 Goto 44 Grad 44 I identity() 45 If 45 ifFn() 46 imag() 46	mirr()	63 64 64 65 65 67 67 68 68 68 69
G gcd() 40 geomCdf() 41 geomPdf() 41 getDenom() 41 getLangInfo() 42 getMode() 42 getNum() 43 getType() 43 gotVarInfo() 43 Goto 44 ▶Grad 44 I identity() 45 If 45 ifFn() 46 imag() 46 Indirection 47	mirr()	63 64 64 64 65 67 67 68 68 69 69
G gcd() 40 geomCdf() 41 geomPdf() 41 getDenom() 41 getLangInfo() 42 getMode() 42 getNum() 43 getType() 43 Goto 44 PGrad 44 I identity() 45 if 45 ifFn() 46 imag() 46 Indirection 47 inString() 47	mirr()	63 64 64 64 65 67 67 68 68 68 69 69
G gcd() 40 geomCdf() 41 geomPdf() 41 getDenom() 41 getLangInfo() 42 getNockInfo() 42 getNum() 43 getVarlof() 43 Goto 44 Forad 44 I identity() 45 if 45 ifFn() 46 imag() 46 Indirection 47 inString() 47 int() 47	mirr()	63 64 64 64 65 67 67 68 68 69 69 69
G gcd() 40 geomCdf() 41 geomPdf() 41 getDenom() 41 getLangInfo() 42 getNockInfo() 42 getNum() 43 getVarlof() 43 Goto 44 Forad 44 I identity() 45 if 45 ifFn() 46 imag() 46 Indirection 47 inString() 47 int() 47	mirr()	63 64 64 64 65 66 67 68 68 69 69 69 70
G gcd() 40 geomCdf() 41 geomPdf() 41 getDenom() 41 getLangInfo() 42 getMode() 42 getNum() 43 getType() 43 getVarInfo() 43 Goto 44 ▶Grad 44 I 45 if 45 if 46 imag() 46 indirection 47 intString() 47 int() 47 intDiv() 47	mirr()	63 64 64 64 65 66 67 68 68 69 69 69 70
G gcd() 40 geomCdf() 41 geomPdf() 41 getDenom() 41 getLangInfo() 42 getMode() 42 getNum() 43 getType() 43 gotOo 44 ▶Grad 44 I identity() 45 If 45 ifFn() 46 imag() 46 Indirection 47 instring() 47 int() 47 int() 47 int() 47 int() 47 interpolate() 48	mirr()	63 64 64 64 65 67 67 68 68 69 69 69 70
G gcd()	mirr()	63 64 64 64 65 67 68 68 69 69 69 70
G gcd() 40 geomCdf() 41 geomPdf() 41 getDenom() 41 getLangInfo() 42 getNockInfo() 42 getNum() 43 getVarlpe() 43 Goto 44 ▶Grad 44 I identity() 45 if 45 ifFn() 46 imag() 46 Indirection 47 inString() 47 int() 47 int() 47 int() 47 intpole() 48 invx²() 48 invx²() 48	mirr()	63 64 64 64 65 67 68 68 69 69 69 70
G gcd() 40 geomCdf() 41 geomPdf() 41 getDenom() 41 getLangInfo() 42 getMode() 42 getNum() 43 getType() 43 getVarInfo() 43 Goto 44 ▶Grad 44 I identity() 45 if 45 if 45 ifFn() 46 indirection 47 instring() 47 int() 47 int() 47 intpiv() 47 interpolate() 48 invY() 48 invNorm() 48	mirr()	63 64 64 64 65 67 68 68 69 69 69 70
G gcd() 40 geomCdf() 41 geomPdf() 41 getDenom() 41 getLangInfo() 42 getMode() 42 getNum() 43 getType() 43 getVarInfo() 43 Goto 44 Forad 44 I identity() 45 If 45 ifFn() 46 imag() 46 Indirection 47 int() 47 int() 47 int() 48 invy2() 48 invY0() 48 invt() 48 invt() 48 invt() 48	mirr()	63 64 64 65 66 67 68 68 69 69 70 71
G gcd() 40 geomCdf() 41 geomPdf() 41 getDenom() 41 getLangInfo() 42 getMode() 42 getNum() 43 getType() 43 getVarInfo() 43 Goto 44 Forad 44 I identity() 45 If 45 ifFn() 46 imag() 46 Indirection 47 int() 47 int() 47 int() 48 invy2() 48 invY0() 48 invt() 48 invt() 48 invt() 48	mirr()	63 64 64 65 66 67 68 68 69 69 70 71
G gcd()	mirr()	63646666666666666666666666666666666666
G gcd() 40 geomCdf() 41 geomPdf() 41 getDenom() 41 getLangInfo() 42 getMode() 42 getNum() 43 getType() 43 gotVarInfo() 43 Goto 44 ▶Grad 44 I identity() 45 If 45 ifFn() 46 imag() 46 Indirection 47	mirr()	63646666666666666666666666666666666666

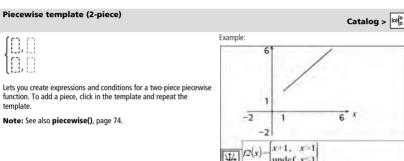
P	sign()	
P•Rx()73	simult()	
P•Ry()74	sin()	. 94
PassErr74	sin-1()	. 94
piecewise()74	sinh()	. 95
	sinh ⁻¹ ()	. 95
poissCdf()74	SinReg	
poissPdf()74	SortA	
▶Polar75	SortD	
polyEval()75		
polyRoots()75	Sphere	
PowerReg76	sqrt()	
Prgm77	stat.results	
prodSeg()77	stat.values	
Product (PI)77	stDevPop()	
product()77	stDevSamp()	. 99
propFrac()78	Stop	100
propriac()76	Store	100
Q	string()	
-	subMat()	
QR78	Sum (Sigma)	
QuadReg79	sum()	
QuartReg79	sumlf()	
В	sumSeq()	
R		
R ▶ Pθ()80	system()	101
R•Pr()80	Т	
▶Rad81	•	
rand()81	T (transpose)	
randBin()81	tan()	
randInt()81	tan ⁻¹ ()	
randMat()81	tanh()	
randNorm()81	tanh ⁻¹ ()	
randPoly()82	tCdf()	104
randSamp()82	Text	104
RandSeed82	Then	104
real()82	tInterval	104
▶Rect82	tInterval_2Samp	105
ref()	tPdf()	
	trace()	105
remain()84	Try	
Request84	tTest	
RequestStr85	tTest_2Samp	
Return85	tvmFV()	
right()85	tvml()	
rk23()86	tvmN()	
root()86	tvmPmt()	
rotate()86	tvmPV()	
round()87	TwoVar	
rowAdd()87	IWUVdI	109
rowDim()88	U	
rowNorm()88	•	440
rowSwap()88	unitV()	
rref()88	unLock	110
_	V	
S	-	
sec()89	varPop()	
sec ⁻¹ ()89	varSamp()	111
sech()89	\A/	
sech-1()89	W	
v		
sea() 90	warnCodes()	
seq()	when()	111
seqGen()90		111
seqGen() 90 seqn() 91	when()	111
seqGen() 90 seqn() 91 setMode() 91	when()	111
seqGen() 90 seqn() 91	when()	111 112

Z	
zInterval	113
zInterval_1Prop	113
zInterval_2Prop	114
zInterval_2Samp	114
zTest	
zTest_1Prop	
zTest_2Prop	
zTest_2Samp	116
Symbols	
+ (add)	117
-(subtract)	117
• (multiply)	118
/ (divide)	118
^ (power)	
x ² (square)	
.+ (dot add)	
(dot subt.)	
. • (dot mult.)	
. / (dot divide)	
.^ (dot power)	
-(negate)	
% (percent)	
= (equal)	
≠ (not equal)	
< (less than)	
≤ (less or equal)	123
> (greater than)	123
≥ (greater or equal)	
⇒ (logical implication)	123
⇔ (logical double implication, XNOR) .	124
! (factorial) & (append)	
d() (derivative)	
() (integral)	
$\sqrt{()}$ (square root)	
Π() (prodSeq)	
110 (b. 003ed)	123

:= (assign)© (comment)	
0b, 0h	
Empty (Void) Elements Calculations involving void elements List arguments containing void element 132	
Shortcuts for Entering Math Expressions	
Expressions EOS™ (Equation Operating	
Expressions EOS™ (Equation Operating System) Hierarchy	nd

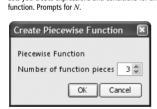

TI-Nspire™ Reference Guide


This guide lists the templates, functions, commands, and operators available for evaluating math expressions.


Expression Templates

Expression templates give you an easy way to enter math expressions in standard mathematical notation. When you insert a template, it appears on the entry line with small blocks at positions where you can enter elements. A cursor shows which element you can enter.

Use the arrow keys or press tab to move the cursor to each element's position, and type a value or expression for the element. Press enter or etri enter to evaluate the expression.



Example:

See the example for Piecewise template (2-piece).

Lets you create expressions and conditions for an N-piece piecewise

Note: See also log(), page 58.

Note: See also piecewise(), page 74.

System of 2 equations template

Creates a system of two linear equations. To add a row to an existing system, click in the template and repeat the template.

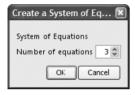
Note: See also system(), page 101.

Example:

solve
$$\left(\begin{cases} x+y=0\\ x-y=5\end{cases}, x, y\right)$$
 $x=\frac{5}{2}$ and $y=\frac{-5}{2}$

solve
$$\begin{cases} y = x^2 - 2 \\ x + 2 \cdot y = -1 \end{cases}$$

$$x = \frac{-3}{2}$$
 and $y = \frac{1}{4}$ or $x = 1$ and $y = -1$


System of N equations template

Lets you create a system of N linear equations. Prompts for N.

Example:

See the example for System of equations template (2-equation).

Note: See also system(), page 101.

Absolute value template

Catalog >

Note: See also abs(), page 6.

Example:

2,3,4,64

dd°mm'ss.ss" template

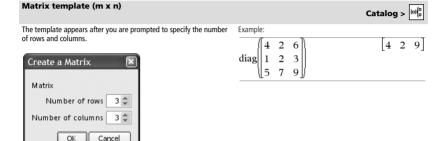
Example:

30°15'10"

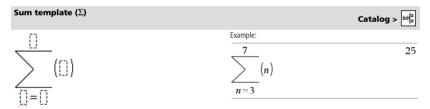
0.528011

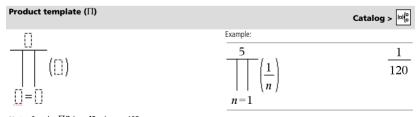
Lets you enter angles in ddomm'ss.ss" format, where dd is the number of decimal degrees, mm is the number of minutes, and ss.ss is the number of seconds.

Matrix template (2 x 2)


Example: 2 | .5 3

5 10 15 20


Creates a 2 x 2 matrix.



Note: If you create a matrix with a large number of rows and columns, it may take a few moments to appear.

Note: See also Σ () (sumSeq), page 126.

Note: See also Π () (prodSeq), page 125.

4

First derivative template

Catalog >

undef

$$\frac{d}{d[]}([]$$

Example: $\frac{d}{dx}(|x|)|x=0$

The first derivative template can be used to calculate first derivative at a point numerically, using auto differentiation methods.

Note: See also d() (derivative), page 124.

Second derivative template

Catalog >

Example:
$$\frac{d^2}{dx^2} (x^3) |_{x=3}$$

The second derivative template can be used to calculate second derivative at a point numerically, using auto differentiation methods.

Note: See also d() (derivative), page 124.

Definite integral template

Catalog >

$$\int_{\Omega}^{\Omega} \Omega \ d\Omega$$

The definite integral template can be used to calculate the definite integral numerically, using the same method as nInt().

Note: See also nint(), page 68.

Example:
$$\begin{array}{|c|c|c|c|c|}\hline
10 & 333.333\\ x^2 dx & & & \\ \hline
\end{array}$$

Alphabetical Listing

Items whose names are not alphabetic (such as +, !, and >) are listed at the end of this section, starting on page 117. Unless otherwise specified, all examples in this section were performed in the default reset mode, and all variables are assumed to be undefined.

A

abs()		Catalog > 🚉
abs(Value1) \Rightarrow value abs(List1) \Rightarrow list abs(Matrix1) \Rightarrow matrix	$\left \left\{\frac{\pi}{2},\frac{-\pi}{3}\right\}\right $	{1.5708,1.0472}
Returns the absolute value of the argument.	$ 2-3\cdot i $	3.60555
Note: See also Absolute value template, page 3.		

If the argument is a complex number, returns the number's modulus.

amortTbl()				Cata	log > 🕎
amortTbl ($NPmt_iN_iI_iPV_i$, $[Pmt]$, $[FV]$, $[PpY]$, $[CpY]$, $[PmtAt]$, $[roundValue]$) $\Rightarrow matrix$	amortTbl(12,6	0,10	,5000,,,1	12,12)	_
Amortization function that returns a matrix as an amortization table for a set of TVM arguments.		0 1	0. -41.67	0. -64.57	5000. 4935.43
NPmt is the number of payments to be included in the table. The table starts with the first payment.		2		-65.11 -65.65	4870.32 4804.67
N, I , PV , Pmt , FV , PpY , CpY , and $PmtAt$ are described in the table of TVM arguments, page 108.		4	-40.04	-66.2	4738.47
 If you omit <i>Pmt</i>, it defaults to <i>Pmt</i>=tvmPmt(<i>N</i>,<i>I</i>,<i>PV</i>,<i>FV</i>,<i>PpY</i>,<i>CpY</i>,<i>PmtAt</i>). If you omit <i>FV</i>, it defaults to <i>FV</i>=0. The defaults for <i>PpY</i>, <i>CpY</i>, and <i>PmtAt</i> are the same as for the <i>TPMt</i>-1. 		5 6 7 8	-39.49 -38.93 -38.37 -37.8		4671.72 4604.41 4536.54 4468.1
TVM functions. roundValue specifies the number of decimal places for rounding. Default=2.		9 10	-37.23	-69.01 -69.58	4399.09 4329.51
The columns in the result matrix are in this order: Payment number, amount paid to interest, amount paid to principal, and balance.		11 12	-36.08 -35.49	-70.16 -70.75	4259.35 4188.6
The balance displayed in row n is the balance after payment n .					

and Catalog > a 2

BooleanExpr1 and BooleanExpr2 ⇒ Boolean expression
BooleanList1 and BooleanList2 ⇒ Boolean list
BooleanMatrix1 and BooleanMatrix2 ⇒ Boolean matrix

You can use the output matrix as input for the other amortization functions Σ **Int()** and Σ **Prn()**, page 126, and **bal()**, page 12.

Returns true or false or a simplified form of the original entry.

and		Catalog > 📳
Integer1 and Integer2 => integer	In Hex base mode:	

Compares two real integers bit-by-bit using an **and** operation. Internally, both integers are converted to signed, 64-bit binary numbers. When corresponding bits are compared, the result is 1 if both bits are 1; otherwise, the result is 0. The returned value represents the bit results, and is displayed according to the Base mode.

You can enter the integers in any number base. For a binary or hexadecimal entry, you must use the 0b or 0h prefix, respectively. Without a prefix, integers are treated as decimal (base 10).

0h7AC36 and 0h3D5F	0h2C1
Important: Zero, not the letter O.	

In Bin base mode:

In Dec base mode:

Note: A binary entry can have up to 64 digits (not counting the 0b prefix). A hexadecimal entry can have up to 16 digits.

angle()	Catalog > [][]
$angle(Value 1) \Rightarrow value$	In Degree angle mode:
Returns the angle of the argument, interpreting the argument as a complex number.	$angle(0+2\cdot i) 90$
	In Gradian angle mode:
	$angle(0+3\cdot i)$ 100
	In Radian angle mode:
	angle $(1+i)$ 0.785398
	$\overline{\operatorname{angle}(\{1+2\cdot\boldsymbol{i},3+0\cdot\boldsymbol{i},0-4\cdot\boldsymbol{i}\})}$
	{1.10715,0.,-1.5708}
$\begin{array}{l} \textbf{angle(List1)} \implies list \\ \textbf{angle(Matrix1)} \implies matrix \end{array}$	$\overline{\operatorname{angle}(\{1+2\cdot i,3+0\cdot i,0-4\cdot i\})}$
Returns a list or matrix of angles of the elements in List1 or Matrix1,	$\left\{\frac{\pi}{-\tan^{-1}\left(\frac{1}{2}\right),0,\frac{-\pi}{2}}\right\}$

ANOVA Catalog > [a] [2]

ANOVA List1,List2[,List3,...,List20][,Flag]

two-dimensional rectangular coordinate point.

Performs a one-way analysis of variance for comparing the means of two to 20 populations. A summary of results is stored in the *stat.results* variable. (See page 98.)

interpreting each element as a complex number that represents a

Flag=0 for Data, Flag=1 for Stats

Output variable	Description
stat. F	Value of the $\overline{\mathbf{F}}$ statistic
stat.PVal	Smallest level of significance at which the null hypothesis can be rejected
stat.df	Degrees of freedom of the groups
stat.SS	Sum of squares of the groups
stat.MS	Mean squares for the groups
stat.dfError	Degrees of freedom of the errors

Output variable	Description
stat.SSError	Sum of squares of the errors
stat.MSError	Mean square for the errors
stat.sp	Pooled standard deviation
stat.xbarlist	Mean of the input of the lists
stat.CLowerList	95% confidence intervals for the mean of each input list
stat.CUpperList	95% confidence intervals for the mean of each input list

ANOVA2way Catalog > [a] 2

ANOVA2way List1,List2[,List3,...,List10][,levRow]

Computes a two-way analysis of variance for comparing the means of two to 10 populations. A summary of results is stored in the *stat.results* variable. (See page 98.)

LevRow=0 for Block

LevRow=2,3,...,Len-1, for Two Factor, where Len=length(List1)=length(List2) = length(List10) and $Len / LevRow \in \{2,3, \}$

Outputs: Block Design

Output variable	Description
stat. F	F statistic of the column factor
stat.PVal	Smallest level of significance at which the null hypothesis can be rejected
stat.df	Degrees of freedom of the column factor
stat.SS	Sum of squares of the column factor
stat.MS	Mean squares for column factor
stat. F Block	F statistic for factor
stat.PValBlock	Least probability at which the null hypothesis can be rejected
stat.dfBlock	Degrees of freedom for factor
stat.SSBlock	Sum of squares for factor
stat.MSBlock	Mean squares for factor
stat.dfError	Degrees of freedom of the errors
stat.SSError	Sum of squares of the errors
stat.MSError	Mean squares for the errors
stat.s	Standard deviation of the error

COLUMN FACTOR Outputs

Output variable	Description
stat. F col	${f F}$ statistic of the column factor

Output variable	Description
stat.PValCol	Probability value of the column factor
stat.dfCol	Degrees of freedom of the column factor
stat.SSCol	Sum of squares of the column factor
stat.MSCol	Mean squares for column factor

ROW FACTOR Outputs

Output variable	Description
stat. F Row	F statistic of the row factor
stat.PValRow	Probability value of the row factor
stat.dfRow	Degrees of freedom of the row factor
stat.SSRow	Sum of squares of the row factor
stat.MSRow	Mean squares for row factor

INTERACTION Outputs

Output variable	Description
stat. F Interact	F statistic of the interaction
stat.PValInteract	Probability value of the interaction
stat.dfInteract	Degrees of freedom of the interaction
stat.SSInteract	Sum of squares of the interaction
stat.MSInteract	Mean squares for interaction

ERROR Outputs

Output variable	Description
stat.dfError	Degrees of freedom of the errors
stat.SSError	Sum of squares of the errors
stat.MSError	Mean squares for the errors
S	Standard deviation of the error

Ans		ctrl (-) keys
Ans ⇒ value Returns the result of the most recently evaluated expression.	56	56
Returns the result of the most recently evaluated expression.	56+4	60
	60+4	64

approx()	Catalog > [a][2]
approx (Value1) ⇒ number Returns the evaluation of the argument as an expression containing	$\frac{1}{\text{approx}} \frac{1}{1}$ 0.333333
decimal values, when possible, regardless of the current Auto or Approximate mode.	$\frac{(3)}{([1\ 1])} = \{0.333333, 0.111111\}$
This is equivalent to entering the argument and pressing ctrl	$\frac{\operatorname{approx}\left\{\left\{\frac{1}{3},\frac{1}{9}\right\}\right\}}{\left\{\left(\frac{1}{3},\frac{1}{9}\right)\right\}}$
enter].	$\underline{\operatorname{approx}(\{\sin(\pi),\cos(\pi)\})} \qquad \qquad \{0.,-1.\}$
	$\frac{\text{approx}([\sqrt{2} \ \sqrt{3}])}{[1.41421 \ 1.73205]}$
	$\frac{\text{approx}\left[\frac{1}{3} \frac{1}{9}\right]}{\text{[0.333333 0.111111]}}$
approx(List1) ⇒ list approx(Matrix1) ⇒ matrix	$\frac{1}{\operatorname{approx}(\left\{\sin(\pi),\cos(\pi)\right\})} \qquad \left\{0,-1.\right\}$
Returns a list or <i>matrix</i> where each element has been evaluated to a	approx($[\sqrt{2} \ \sqrt{3}]$) [1.41421 1.73205]
decimal value, when possible.	
>approxFraction()	Catalog > 🚉
Value ▶approxFraction([Tol]) ⇒ value	1 1 / \ 0.833333
List $ hat{list} \Rightarrow list$ Matrix $ hat{lapproxFraction([Tol])} \Rightarrow list$	$\frac{1}{2} + \frac{1}{3} + \tan(\pi)$ 0.833333
Returns the input as a fraction, using a tolerance of Tol . If Tol is omitted, a tolerance of 5.E-14 is used.	0.8333333333333333333333333333333333333
Note: You can insert this function from the computer keyboard by typing @>approxFraction().	<u>5</u> 6
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	{π,1.5} ▶approxFraction(5. ε -14)
	$\left\{\frac{5419351}{1725033}, \frac{3}{2}\right\}$
	[1725033 2]
approxRational()	Catalog > 📆
approxRational(Value[, Tol]) \Rightarrow value approxRational(List[, Tol]) \Rightarrow list approxRational(Matrix[, Tol]) \Rightarrow matrix	${\text{approxRational} \left(0.333,5\cdot10^{-5}\right)} \frac{333}{1000}$
Returns the argument as a fraction using a tolerance of <i>Tol</i> . If <i>Tol</i> is omitted, a tolerance of 5.E-14 is used.	approxRational({0.2,0.33,4.125},5.e-14)
officed, a tolerance of 3.2. 14 is used.	$\left\{\frac{1}{5}, \frac{33}{100}, \frac{33}{8}\right\}$
	, , ,
arccos()	See cos ⁻¹ (), page 20.
arccosh()	See cosh ⁻¹ (), page 21.

See cot⁻¹(), page 22.

arccot()

arccoth()		See coth ⁻¹ (), page 22.
		see com (// page 22.
arccsc()		See csc ⁻¹ (), page 24.
arccsch()		See csch ⁻¹ (), page 24.
arcsec()		See sec ⁻¹ (), page 89.
•		
arcsech()		See sech ⁻¹ (), page 89.
arcsin()		See sin ⁻¹ (), page 94.
arcsinh()		See sinh ⁻¹ (), page 95.
arctan()		See tan-1(), page 102.
-		W 3 - 1 - 1
austonik ()		C t l-10
arctanh()		See tanh ⁻¹ (), page 103.
augment()		Catalog > 🚉 🕏
$augment(List1, List2) \Rightarrow list$	augment($\{1,-3,2\},\{5,4\}$)	{1,-3,2,5,4}
Returns a new list that is List2 appended to the end of List1.	<u> </u>	(, , , , ,
$augment(Matrix1, Matrix2) \Rightarrow matrix$	$\begin{bmatrix} 1 & 2 \end{bmatrix} \rightarrow m1$	1 2
Returns a new matrix that is <i>Matrix2</i> appended to <i>Matrix1</i> . When the "," character is used, the matrices must have equal row	[3 4]	[3 4]
dimensions, and <i>Matrix2</i> is appended to <i>Matrix1</i> as new columns. Does not alter <i>Matrix1</i> or <i>Matrix2</i> .	$\begin{bmatrix} 5 \\ 6 \end{bmatrix} \rightarrow m2$	[5]
See not dice Man M. Of Man M.		[6]
	augment $(m1, m2)$	$\begin{bmatrix} 1 & 2 & 5 \\ 3 & 4 & 6 \end{bmatrix}$
		[3 4 6]

avgRC()		Catalog > 📆
$avgRC(Expr1, Var [=Value] [, Step]) \Rightarrow expression$ $avgRC(Expr1, Var [=Value] [, List1]) \Rightarrow list$	x:=2	2
avgRC(List1, Var [=Value] [, Step]) \Rightarrow list avgRC(Matrix1, Var [=Value] [, Step]) \Rightarrow matrix	$\operatorname{avgRC}(x^2-x+2,x)$	3.001
Returns the forward-difference quotient (average rate of change).	$\operatorname{avgRC}(x^2 - x + 2, x, .1)$	3.1
$\mathit{Expr1}$ can be a user-defined function name (see Func).	$\overline{\operatorname{avgRC}(x^2 - x + 2, x, 3)}$	6
When $\it Value$ is specified, it overrides any prior variable assignment or any current " \mid " substitution for the variable.	avgRCu x+2,x,3/	

Step is the step value. If Step is omitted, it defaults to 0.001. Note that the similar function centralDiff() uses the centraldifference quotient.

B

bal()			Cata	log > 🔯
bal ($NPmt,N,I,PV$, $[Pmt]$, $[FV]$, $[PpY]$, $[CpY]$, $[PmtAt]$, $[roundValue]$) $\Rightarrow value$	bal(5,6,5.75,5000	,,12,12)		833.11
bal(NPmt,amortTable) ⇒ value	tbl:=amortTbl(6,6,5.75,5000,,12,12)			
Amortization function that calculates schedule balance after a specified payment.	0	0.	0.	5000.
N, I, PV, Pmt, FV, PpY, CpY, and PmtAt are described in the table	1	-23.35	-825.63	4174.37
of TVM arguments, page 108.	2	-19.49	-829.49	3344.88
NPmt specifies the payment number after which you want the data	3	-15.62	-833.36	2511.52
calculated.	4	-11.73	-837.25	1674.27
N, I, PV, Pmt, FV, PpY, CpY, and PmtAt are described in the table	5	-7.82	-841.16	833.11
of TVM arguments, page 108.	[6	-3.89	-845.09	-11.98
 If you omit Pmt, it defaults to Pmt=tvmPmt(N,I,PV,FV,PpY,CpY,PmtAt). 	bal(4,tbl)			1674.27

Pmt=**tvmPmt(** $N_{i}I_{i}PV_{i}FV_{i}PpY_{i}CpY_{i}PmtAt$ **)**. If you omit FV, it defaults to FV=0.

The defaults for PpY, CpY, and PmtAt are the same as for the TVM functions.

roundValue specifies the number of decimal places for rounding. Default=2.

bal(NPmt,amortTable) calculates the balance after payment number NPmt, based on amortization table amortTable. The amortTable argument must be a matrix in the form described under amortTbl(), page 6.

Note: See also Σ **Int()** and Σ **Prn()**, page 126.

numbers always have a 0b or 0h prefix, respectively.

▶Base2		Catalog > [2]
Integer1 ▶Base2 ⇒ integer	256▶Base2	0b100000000
Note: You can insert this operator from the computer keyboard by typing @>Base2.	0h1F▶Base2	0b11111
Converts Integer 1 to a binary number. Binary or hexadecimal		

▶Base2 Catalog > [a] [3]

Zero, not the letter O, followed by b or h.

0b binaryNumber

0h hexadecimalNumber

 A binary number can have up to 64 digits. A hexadecimal number can have up to 16.

Without a prefix, *Integer1* is treated as decimal (base 10). The result is displayed in binary, regardless of the Base mode.

Negative numbers are displayed in "two's complement" form. For example,

-1 is displayed as

Ohffffffffffffffffff in Hex base mode Ob111...111 (64 1's) in Binary base mode

-263 is displayed as

0h80000000000000000000000 in Hex base mode

0b100...000 (63 zeros) in Binary base mode

If you enter a decimal integer that is outside the range of a signed, 64-bit binary form, a symmetric modulo operation is used to bring the value into the appropriate range. Consider the following examples of values outside the range.

 2^{63} becomes -2^{63} and is displayed as 0h80000000000000000000 in Hex base mode 0b100...000 (63 zeros) in Binary base mode

2⁶⁴ becomes 0 and is displayed as 0h0 in Hex base mode 0b0 in Binary base mode

Base10		Catalog > 🗓 🖁
Integer >Base10 => integer	0b10011▶Base10	19
Note: You can insert this operator from the computer keyboard by typing @>Base10.	0h1F▶Base10	31

0b binaryNumber

0h hexadecimalNumber

Zero, not the letter O, followed by b or h.

A binary number can have up to 64 digits. A hexadecimal number can have up to 16.

Without a prefix, *Integer1* is treated as decimal. The result is displayed in decimal, regardless of the Base mode.

Converts Integer1 to a decimal (base 10) number. A binary or hexadecimal entry must always have a 0b or 0h prefix, respectively.

▶Base16		Catalog > 🔃
Integer1 ▶Base16 ⇒ integer	256▶Base16	0h100
Note: You can insert this operator from the computer keyboard by typing @>Base16.	0b111100001111▶Base16	OhFOF

Converts *Integer1* to a hexadecimal number. Binary or hexadecimal numbers always have a 0b or 0h prefix, respectively.

0b binaryNumber

0h hexadecimalNumber

Zero, not the letter O, followed by b or h.

A binary number can have up to 64 digits. A hexadecimal number can have up to 16.

Without a prefix, *Integer1* is treated as decimal (base 10). The result is displayed in hexadecimal, regardless of the Base mode.

If you enter a decimal integer that is too large for a signed, 64-bit binary form, a symmetric modulo operation is used to bring the value into the appropriate range. For more information, see **>Base2**, page 12.

binomCdf() Catalog > [1]3

 $binomCdf(n,p) \Rightarrow number$

binomCdf(*n,p,lowBound,upBound*) ⇒ *number* if *lowBound* and *upBound* are numbers, *list* if *lowBound* and *upBound* are lists

binomCdf(n,p,upBound**)** for P($0 \le X \le upBound$) \Rightarrow number if upBound is a number, *list* if upBound is a list

Computes a cumulative probability for the discrete binomial distribution with n number of trials and probability p of success on each trial.

For $P(X \le upBound)$, set lowBound=0

binomPdf() Catalog > [a] 2

 $binomPdf(n,p) \Rightarrow number$

binomPdf $(n,p,XVal) \Rightarrow number$ if XVal is a number, list if XVal is a list

Computes a probability for the discrete binomial distribution with n number of trials and probability p of success on each trial.

ceiling()

$ceiling(Value1) \Rightarrow value$	ceiling(.456)	1.
Returns the nearest integer that is \geq the argument.		
The argument can be a real or a complex number.		
Note: See also floor().		
ceiling($List1$) $\Rightarrow list$ ceiling($Matrix1$) $\Rightarrow matrix$	ceiling({-3.1,1,2.5})	{-3.,1,3.}
Returns a list or matrix of the ceiling of each element.	$ \begin{array}{ccc} \text{ceiling} & 0 & -3.2 \cdot i \\ 1.3 & 4 \end{array} $	$\begin{bmatrix} 0 & -3. \cdot i \\ 2. & 4 \end{bmatrix}$

Catalog > 23

centralDiff()		Catalog > 🕎
centralDiff ($ExprI_{v}Var = Value [_{v}Step]$) $\Rightarrow expression$ centralDiff ($ExprI_{v}Var = Value = v$) $Var = Value = v$ centralDiff ($ExprI_{v}Var = Value = V$	$\frac{1}{\text{centralDiff}(\cos(x),x) x=\frac{\pi}{2}}$	-1.
centralDiff(List1,Var [=Value][,Step]) \Rightarrow list centralDiff(Matrix1,Var [=Value][,Step]) \Rightarrow matrix Poture the numerical derivative using the central difference quotient		

Returns the numerical derivative using the central difference quotient formula.

When Value is specified, it overrides any prior variable assignment or any current "|" substitution for the variable.

Step is the step value. If Step is omitted, it defaults to 0.001.

When using List1 or Matrix1, the operation gets mapped across the values in the list or across the matrix elements.

Note: See also avgRC().

char()		Catalog > 🕎 🕽
char(Integer) ⇒ character	char(38)	"&"
Returns a character string containing the character numbered <i>Integer</i> from the handheld character set. The valid range for <i>Integer</i> is 0–65535	char(65)	"A"

χ^2 2way Catalog > [a

χ²2way obsMatrix chi22way obsMatrix

Computes a χ^2 test for association on the two-way table of counts in the observed matrix obsMatrix. A summary of results is stored in the *stat.results* variable. (See page 98.)

For information on the effect of empty elements in a matrix, see "Empty (Void) Elements" on page 132.

Output variable	Description
stat. χ^2	Chi square stat: sum (observed - expected) ² /expected
stat.PVal	Smallest level of significance at which the null hypothesis can be rejected
stat.df	Degrees of freedom for the chi square statistics
stat.ExpMat	Matrix of expected elemental count table, assuming null hypothesis
stat.CompMat	Matrix of elemental chi square statistic contributions

 χ^2 Cdf() Catalog > [1]2

 χ^2 Cdf(lowBound,upBound,df) \Rightarrow number if lowBound and upBound are numbers, list if lowBound and upBound are lists chi2Cdf(lowBound,upBound,df) \Rightarrow number if lowBound are lists upBound are numbers, list if lowBound and upBound are lists

Computes the χ^2 distribution probability between lowBound and upBound for the specified degrees of freedom df.

For $P(X \le upBound)$, set lowBound = 0.

For information on the effect of empty elements in a list, see "Empty (Void) Elements" on page 132.

 χ^2 GOF Catalog > [1]3

χ²GOF obsList,expList,df chi2GOF obsList,expList,df

Performs a test to confirm that sample data is from a population that conforms to a specified distribution. *obsList* is a list of counts and must contain integers. A summary of results is stored in the *stat.results* variable. (See page 98.)

For information on the effect of empty elements in a list, see "Empty (Void) Elements" on page 132.

Output variable	Description
$stat.\chi^2$	Chi square stat: sum((observed - expected) ² /expected
stat.PVal	Smallest level of significance at which the null hypothesis can be rejected
stat.df	Degrees of freedom for the chi square statistics
stat.CompList	Elemental chi square statistic contributions

 χ^2 Pdf() Catalog > [a][2]

 χ^2 Pdf(XVal,df) \Rightarrow number if XVal is a number, list if XVal is a

 ${\bf chi2Pdf}(XVal,df) \implies number \ {\it if}\ XVal \ {\it is}\ {\it a}\ {\it number}, \ list \ {\it if}\ XVal \ {\it is}$ a list

Computes the probability density function (pdf) for the χ^2 distribution at a specified XVal value for the specified degrees of freedom df.

For information on the effect of empty elements in a list, see "Empty (Void) Elements" on page 132.

ClearAZ		Catalog > 🕎
ClearAZ Clears all single-character variables in the current problem space.	5 → b	5
If one or more of the variables are locked, this command displays an	\overline{b}	5
error message and deletes only the unlocked variables. See unLock , page 110.	ClearAZ	Done
	b	"Error: Variable is not defined"

ClrErr

Clears the error status and sets system variable errCode to zero.

The Else clause of the Try...Else...EndTry block should use ClrErr or PassErr. If the error is to be processed or ignored, use CIrErr. If what to do with the error is not known, use PassErr to send it to the next error handler. If there are no more pending Try...Else...EndTry error handlers, the error dialog box will be displayed as normal.

Note: See also PassErr, page 74, and Try, page 106.

Note for entering the example: In the Calculator application on the handheld, you can enter multi-line definitions by pressing 4 instead of enter at the end of each line. On the computer keyboard, hold down Alt and press Enter.

For an example of CIrErr, See Example 2 under the Try command, page 106.

colAugment()		Catalog > 📆
colAugment (<i>Matrix1</i> , <i>Matrix2</i>) ⇒ <i>matrix</i> Returns a new matrix that is <i>Matrix2</i> appended to <i>Matrix1</i> . The matrices must have equal column dimensions, and <i>Matrix2</i> is appended to <i>Matrix1</i> as new rows. Does not alter <i>Matrix1</i> or <i>Matrix2</i> .	$ \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \rightarrow m1 $ $ \begin{bmatrix} 5 & 6 \end{bmatrix} \rightarrow m2 $ $ \text{colAugment}(m1, m2) $	[1 2] 3 4] [5 6] [1 2] 3 4

colDim()		Catalog > 🗐 🖟
colDim(<i>Matrix</i>) ⇒ <i>expression</i>	ID:[0 1 2]	3
Returns the number of columns contained in Matrix.	$\operatorname{colDim} \left(\begin{array}{ccc} 0 & 1 & 2 \\ 3 & 4 & 5 \end{array} \right)$	3
Note: See also rowDim().	(6- 2- 2)	

colNorm()		Catalog > 🔃
colNorm(Matrix) ⇒ expression	1 -2 3 mat	1 -2 3
Returns the maximum of the sums of the absolute values of the elements in the columns in <i>Matrix</i> .	$\begin{bmatrix} 1 & -2 & 3 \\ 4 & 5 & -6 \end{bmatrix} \rightarrow mat$	4 5 -6
Note: Undefined matrix elements are not allowed. See also rowNorm() .	colNorm(mat)	9

completeSquare()

Catalog > 2

completeSquare(ExprOrEqn, Var) ⇒ expression or equation completeSquare(ExprOrEqn, Var^Power) ⇒ expression or equation

completeSquare(ExprOrEqn, Var1 Var2 [...]) ⇒ expression or equation

completeSquare(ExprOrEqn, {Var1 Var2 [...]}) ⇒ expression or equation

Converts a quadratic polynomial expression of the form a-x²+b-x+c into the form a-(x-h)2+k

- or -

Converts a quadratic equation of the form a-x²+b-x+c=d into the form a·(x-h)2=k

The first argument must be a quadratic expression or equation in standard form with respect to the second argument.

The Second argument must be a single univariate term or a single univariate term raised to a rational power, for example x, y2, or z(1/3).

The third and fourth syntax attempt to complete the square with respect to variables Var1, Var2 [,...]).

completeSquare $(x^2+2\cdot x+3,x)$	$(x+1)^2+2$
completeSquare $(x^2+2\cdot x=3,x)$	$(x+1)^2=4$

completeSquare
$$\left(x^6+2\cdot x^3+3\cdot x^3\right)$$
 $\left(x^3+1\right)^2+2$

completeSquare
$$(x^2+4\cdot x+y^2+6\cdot y+3=0,x,y)$$

 $(x+2)^2+(y+3)^2=1$

completeSquare
$$\left(3 \cdot x^2 + 2 \cdot y + 7 \cdot y^2 + 4 \cdot x = 3, \{x, y\}\right)$$

$$3 \cdot \left(x + \frac{2}{3}\right)^2 + 7 \cdot \left(y + \frac{1}{7}\right)^2 = \frac{94}{21}$$

completeSquare
$$(x^2+2\cdot x\cdot y,x,y)$$
 $(x+y)^2-y^2$

conj() Catalog > 23

conj(Value1) ⇒ value $conj(List1) \Rightarrow list$ $conj(Matrix1) \Rightarrow matrix$

Returns the complex conjugate of the argument.

$\operatorname{conj}(1+2\cdot i)$		1-2-1
$conj \left[2 1 - 3 \cdot i \right]$	2	1+3·i
`\[-i -7]}	l i	-7

Catalog > 2

constructMat()

constructMat(Expr.Var1.Var2.numRows.numCols)

⇒ matrix

Returns a matrix based on the arguments.

Expr is an expression in variables Var1 and Var2. Elements in the resulting matrix are formed by evaluating Expr for each incremented value of Var1 and Var2.

Var1 is automatically incremented from 1 through numRows. Within each row, Var2 is incremented from 1 through numCols.

$\frac{1}{\text{constructMat}\left(\frac{1}{i+i}, i, j, 3, 4\right)}$	1	1	1	$\frac{1}{2}$
\ i+j \ \ \	2	3	4	5
	1	1	1	1
	3	4	5	6
	1	1	1	1
	4	5	6	7

CopyVar Catalog > 2

CopyVar Var1, Var2 CopyVar Var1., Var2.

CopyVar Var1, Var2 copies the value of variable Var1 to variable Var2, creating Var2 if necessary. Variable Var1 must have a value.

If Var1 is the name of an existing user-defined function, copies the definition of that function to function Var2. Function Var1 must be defined.

Var1 must meet the variable-naming requirements or must be an indirection expression that simplifies to a variable name meeting the requirements.

Define $a(x) = \frac{1}{x}$	Done
$\frac{x}{\text{Define } b(x) = x^2}$	Done
CopyVar $a,c:c(4)$	1
CopyVar $b,c:c(4)$	16

CopyVar			Catalo	g > 🕎
CopyVar <i>Var1.</i> , <i>Var2.</i> copies all members of the <i>Var1.</i> variable group to the <i>Var2.</i> group, creating <i>Var2.</i> if necessary.	aa.a:=45			45
$\mathit{Var1}ullet$ must be the name of an existing variable group, such as the	aa.b:=6.78			6.78
statistics stat.nn results, or variables created using the LibShortcut() function. If Var2. already exists, this command	aa.c:=8.9			8.9
replaces all members that are common to both groups and adds the members that do not already exist. If one or more members of $Var2$ are locked, all members of $Var2$ are left unchanged.	getVarInfo()	aa.a aa.b aa.c	"NUM" "NUM" "NUM"	"[]" "[]" "[]"]
	CopyVar aa.,bb.			Done
	getVarInfo()	aa.a aa.b aa.c bb.a bb.b	"NUM" "NUM" "NUM" "NUM" "NUM"	

corrMat() Catalog > [1][2]

corrMat(List1,List2[,...[,List20]])

Computes the correlation matrix for the augmented matrix [List1, List2, ..., List20].

cos()		trig key
cos(Value1) ⇒ value	In Degree angle mode:	
$\cos(List I) \Rightarrow list$	// m \ \	0.707107
${f cos}({\it Value 1})$ returns the cosine of the argument as a value.	$\cos\left[\left \frac{\kappa}{4}\right ^r\right]$	
cos(List1) returns a list of the cosines of all elements in List1.	((*))	
Note: The argument is interpreted as a degree, gradian or radian	cos(45)	0.707107
angle, according to the current angle mode setting. You can use °, 6, or ^r to override the angle mode temporarily.	cos({0,60,90})	{1.,0.5,0.}
	In Gradian angle mode:	
	cos({0,50,100})	{1.,0.707107,0.}
	In Radian angle mode:	
	$\cos\left(\frac{\pi}{4}\right)$	0.707107
	$\cos(45^\circ)$	0.707107

cos()

trig kev

trig key

-0.090153 0.218972

cos(squareMatrix1) ⇒ squareMatrix

Returns the matrix cosine of squareMatrix 1. This is not the same as calculating the cosine of each element.

When a scalar function f(A) operates on squareMatrix1 (A), the result is calculated by the algorithm:

Compute the eigenvalues (λ) and eigenvectors (V) of A.

squareMatrix1 must be diagonalizable. Also, it cannot have symbolic variables that have not been assigned a value.

Form the matrices:

$$B = \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & \lambda_n \end{bmatrix} \text{ and } X = [V_1, V_2, \dots, V_n]$$

Then $A = X B X^{-1}$ and $f(A) = X f(B) X^{-1}$. For example, $cos(A) = X cos(B) X^{-1}$ where:

cos(B) =

$$\begin{bmatrix} \cos(\lambda_1) & 0 & \dots & 0 \\ 0 & \cos(\lambda_2) & \dots & 0 \\ 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & \cos(\lambda_n) \end{bmatrix}$$

All computations are performed using floating-point arithmetic.

In Radian angle mode:

0.248079

cos⁻¹()

 $cos^{-1}(Value 1) \implies value$

 $\cos^{-1}(List I) \Rightarrow list$

cos⁻¹(Value1) returns the angle whose cosine is Value1.

cos⁻¹(List1) returns a list of the inverse cosines of each element of List1.

Note: The result is returned as a degree, gradian or radian angle, according to the current angle mode setting.

Note: You can insert this function from the keyboard by typing arccos (...).

 $cos^{-1}(squareMatrix1) \Rightarrow squareMatrix$

Returns the matrix inverse cosine of *squareMatrix1*. This is not the same as calculating the inverse cosine of each element. For information about the calculation method, refer to **cos()**.

 $square Matrix 1 \; \text{must}$ be diagonalizable. The result always contains floating-point numbers.

In Degree angle mode:

cos⁻¹(1) 0

In Gradian angle mode:

cos⁻¹(0) 100

In Radian angle mode:

cos⁻¹({0,0.2,0.5}) {1.5708,1.36944,1.0472}

In Radian angle mode and Rectangular Complex Format:

$$\cos^{-1} \begin{bmatrix} 1 & 5 & 3 \\ 4 & 2 & 1 \\ 6 & -2 & 1 \end{bmatrix}$$

[1.73485+0.064606•*i* -1.49086+2.10514 -0.725533+1.51594•*i* 0.623491+0.77836• -2.08316+2.63205•*i* 1.79018-1.27182•

To see the entire result, press \triangle and then use \triangleleft and \triangleright to move the cursor.

cosh()

Catalog > 23

cosh(Value1) ⇒ value

 $cosh(List1) \implies list$

cosh(Value 1) returns the hyperbolic cosine of the argument.

cosh(List1) returns a list of the hyperbolic cosines of each element of List1.

cosh(squareMatrix1) ⇒ squareMatrix

Returns the matrix hyperbolic cosine of *squareMatrix1*. This is not the same as calculating the hyperbolic cosine of each element. For information about the calculation method, refer to **cos()**.

squareMatrix1 must be diagonalizable. The result always contains floating-point numbers.

 $\cosh\left(\left(\frac{\pi}{4}\right)^{r}\right) \qquad \qquad 1.74671 \text{E} 19$

In Radian angle mode:

$$cosh \begin{bmatrix} 1 & 5 & 3 \\ 4 & 2 & 1 \\ 6 & -2 & 1 \end{bmatrix} \\
421.255$$

421.255 253.909 216.905 327.635 255.301 202.958 226.297 216.623 167.628

cosh-1()

Catalog > [2]

 $cosh^{-1}(Value1) \Rightarrow value$ $cosh^{-1}(List1) \Rightarrow list$

 $\cosh^{-1}(Value 1)$ returns the inverse hyperbolic cosine of the argument.

cosh⁻¹(List1) returns a list of the inverse hyperbolic cosines of each element of List1.

Note: You can insert this function from the keyboard by typing arcosh(...).

cosh⁻¹(squareMatrix1) ⇒ squareMatrix

Returns the matrix inverse hyperbolic cosine of squareMatrix1. This is not the same as calculating the inverse hyperbolic cosine of each element. For information about the calculation method, refer to cos().

squareMatrix1 must be diagonalizable. The result always contains floating-point numbers.

 $\begin{array}{ccc} \cosh^{\text{-}1}\!\!\left(1\right) & 0 \\ \cosh^{\text{-}1}\!\!\left(\left\{1,\!2.1,\!3\right\}\right) & \left\{0,\!1.37286,\!\cosh^{\text{-}1}\!\!\left(3\right)\right\} \end{array}$

In Radian angle mode and In Rectangular Complex Format:

$$\cosh^{-1} \begin{bmatrix} 1 & 5 & 3 \\ 4 & 2 & 1 \\ 6 & -2 & 1 \end{bmatrix}$$

[2.52503+1.73485•**i** -0.009241-1.4908¢ 0.486969-0.725533•**i** 1.66262+0.623491• -0.322354-2.08316•**i** 1.26707+1.79018•

To see the entire result, press riangle and then use riangle and riangle to move the cursor.

cot()

^{trig} key

1

1

 $cot(Value 1) \Rightarrow value$

 $cot(List1) \Rightarrow list$

Returns the cotangent of Value 1 or returns a list of the cotangents of all elements in List1.

Note: The argument is interpreted as a degree, gradian or radian angle, according to the current angle mode setting. You can use $^{\circ}$, G , or f to override the angle mode temporarily.

In Degree angle mode:

cot(45)

In Gradian angle mode:

cot(50)

In Radian angle mode:

cot({1,2.1,3}) {0.642093,-0.584848,-7.01525}

cot ⁻¹ ()		trig key
cot⁻¹(Value1) ⇒ value	In Degree angle mode:	
$\cot^{-1}(List1) \Rightarrow list$	cot-1(1)	45
Returns the angle whose cotangent is <i>Value1</i> or returns a list containing the inverse cotangents of each element of <i>List1</i> .	In Gradian angle mode:	
Note: The result is returned as a degree, gradian or radian angle, according to the current angle mode setting.	cot ⁻¹ (1)	50
Note: You can insert this function from the keyboard by typing arcot().	In Radian angle mode:	
	cot ⁻¹ (1)	.785398

coth()		Catalog > 🕎 🕽
$coth(Value1) \Rightarrow value$ $coth(List1) \Rightarrow list$	coth(1.2)	1.19954
Returns the hyperbolic cotangent of <i>Value1</i> or returns a list of the hyperbolic cotangents of all elements of <i>List1</i> .	$\coth(\{1,3.2\})$	{1.31304,1.00333}

coth ⁻¹ ()	Catalog > [a][2]
$ coth^{-1}(Value1) \Rightarrow value $ $ coth^{-1}(List1) \Rightarrow list $	coth ⁻¹ (3.5) 0.293893
Returns the inverse hyperbolic cotangent of $Value1$ or returns a list containing the inverse hyperbolic cotangents of each element of $List1$.	coth ⁻¹ ({-2,2.1,6}) {-0.549306,0.518046,0.168236}

count()		Catalog > [1][2]
count(Value1orList1 [,Value2orList2 [,]]) ⇒ value	count(2,4,6)	3
Returns the accumulated count of all elements in the arguments that	1	
evaluate to numeric values.	$\operatorname{count}(\{2,4,6\})$	3
Each argument can be an expression, value, list, or matrix. You can mix data types and use arguments of various dimensions.	$ \begin{array}{c c} \hline \operatorname{count}\left(2,\left\{4,6\right\}, \begin{bmatrix} 8 & 10 \\ 12 & 14 \end{bmatrix}\right) \end{array} $	7
For a list, matrix, or range of cells, each element is evaluated to	([12 14])	

Note: You can insert this function from the keyboard by typing

Within the Lists & Spreadsheet application, you can use a range of

Empty (void) elements are ignored. For more information on empty

determine if it should be included in the count.

cells in place of any argument.

elements, see page 132.

arccoth(...).

countif() Catalog > [1]

countif(List, Criteria) ⇒ value

Returns the accumulated count of all elements in List that meet the specified Criteria.

Criteria can be:

- A value, expression, or string. For example, 3 counts only those elements in List that simplify to the value 3.
- A Boolean expression containing the symbol ? as a placeholder for each element. For example, ?<5 counts only those elements in List that are less than 5.

Within the Lists & Spreadsheet application, you can use a range of cells in place of List.

Empty (void) elements in the list are ignored. For more information on empty elements, see page 132.

Note: See also sumif(), page 101, and frequency(), page 39.

$$countIf(\{1,3,"abc",undef,3,1\},3)$$

Counts the number of elements equal to 3.

$$countIf({ "abc","def","abc",3},"def")$$
 1

Counts the number of elements equal to "def."

Counts 1 and 3.

countIf(
$$\{1,3,5,7,9\},2<8</math)

Counts 3, 5, and 7.$$

Counts 1, 3, 7, and 9.

cPolvRoots() Catalog > 23

 $cPolyRoots(Poly,Var) \Rightarrow list$ $cPolyRoots(ListOfCoeffs) \Rightarrow list$

The first syntax, cPolyRoots(Poly, Var), returns a list of complex roots of polynomial Poly with respect to variable Var.

Poly must be a polynomial in expanded form in one variable. Do not use unexpanded forms such as y2·y+1 or x·x+2·x+1

The second syntax, cPolyRoots(ListOfCoeffs), returns a list of complex roots for the coefficients in ListOfCoeffs.

Note: See also polyRoots(), page 75.

polyRoots(y³+1,y)	{-1}
cPolyRoots (y^3+1,y) $\{-1,0.5-0.866025i,0.5+$	-n 866025 4 }
$\frac{(1,0.5 \text{ 0.000023 l,0.5})}{\text{polyRoots}(x^2+2\cdot x+1,x)}$	{-1,-1}
cPolyRoots({1,2,1})	{-1,-1}

crossP() Catalog > 2

 $crossP(List1, List2) \Rightarrow list$

Returns the cross product of List1 and List2 as a list.

List1 and List2 must have equal dimension, and the dimension must be either 2 or 3.

crossP(Vector1, Vector2) ⇒ vector

Returns a row or column vector (depending on the arguments) that is the cross product of Vector1 and Vector2.

Both Vector1 and Vector2 must be row vectors, or both must be column vectors. Both vectors must have equal dimension, and the dimension must be either 2 or 3.

csc()		trig key
csc(Value1) ⇒ value	In Degree angle mode:	
$csc(List1) \Rightarrow list$	csc(45)	1.41421
Returns the cosecant of $\mathit{Value1}$ or returns a list containing the cosecants of all elements in $\mathit{List1}$.	In Gradian angle mode:	
	csc(50)	1.41421
	In Radian angle mode:	
	$\csc\left\{\left\{1,\frac{\pi}{2},\frac{\pi}{3}\right\}\right\}$	{1.1884,1.,1.1547}

csc ⁻¹ ()	trig key
$csc^{-1}(Value I) \Rightarrow value$	In Degree angle mode:
$\csc^{-1}(List1) \Rightarrow list$	csc ⁻¹ (1) 90
Returns the angle whose cosecant is <i>Value1</i> or returns a list containing the inverse cosecants of each element of <i>List1</i> .	In Gradian angle mode:
Note: The result is returned as a degree, gradian or radian angle, according to the current angle mode setting.	csc-1(1) 100
Note: You can insert this function from the keyboard by typing arcsc().	In Radian angle mode:
	csc ⁻¹ ({1,4,6}) {1.5708,0.25268,0.167448}

csch()		Catalog > 👰 🛚
$\operatorname{csch}(Value I) \Rightarrow value$ $\operatorname{csch}(List I) \Rightarrow list$	csch(3)	0.099822
Returns the hyperbolic cosecant of $Value1$ or returns a list of the hyperbolic cosecants of all elements of $List1$.	$\operatorname{csch}(\{1,2.1,4\})$ $\{0.856$	0918,0.248641,0.036644}

csch ⁻¹ ()	Catalog > 📆 🖫
$csch^{-1}(Value) \Rightarrow value$ $csch^{-1}(List1) \Rightarrow list$	csch-'(1) 0.881374
Returns the inverse hyperbolic cosecant of $Value1$ or returns a list containing the inverse hyperbolic cosecants of each element of $List1$.	csch ⁻ ({1,2.1,3}) {0.881374,0.459815,0.32745}
Note: You can insert this function from the keyboard by typing	(0.001371,0137013,0132713)

arccsch(...).

CubicReg X, Y[, [Freq] [, Category, Include]]

Computes the cubic polynomial regression $y = a \cdot x^3 + b \cdot x^2 + c \cdot x + d$ on lists X and Y with frequency Freq. A summary of results is stored in the stat.results variable. (See page 98.)

All the lists must have equal dimension except for *Include*.

X and Y are lists of independent and dependent variables.

Freq is an optional list of frequency values. Each element in Freq specifies the frequency of occurrence for each corresponding X and Y data point. The default value is 1. All elements must be integers \geq 0.

Category is a list of numeric or string category codes for the corresponding *X* and *Y* data.

Include is a list of one or more of the category codes. Only those data items whose category code is included in this list are included in the calculation

For information on the effect of empty elements in a list, see "Empty (Void) Elements" on page 132.

Output variable	Description
stat.RegEqn	Regression equation: a • x3+b • x2+c • x+d
stat.a, stat.b, stat.c, stat.d	Regression coefficients
stat.R ²	Coefficient of determination
stat.Resid	Residuals from the regression
stat.XReg	List of data points in the modified X List actually used in the regression based on restrictions of Freq, Category List, and Include Categories
stat.YReg	List of data points in the modified Y List actually used in the regression based on restrictions of Freq, Category List, and Include Categories
stat.FreqReg	List of frequencies corresponding to stat.XReg and stat.YReg

cumulativeSum()		Catalog > 📆
cumulativeSum($List1$) $\Rightarrow list$	cumulativeSum($\{1,2,3,4\}$)	{1,3,6,10}
Returns a list of the cumulative sums of the elements in $List1$, starting at element 1.	(1,2,3,+))	[1,3,0,10]
$cumulativeSum(MatrixI) \Rightarrow matrix$	[1 2]	[1 2]
Returns a matrix of the cumulative sums of the elements in $MatrixI$. Each element is the cumulative sum of the column from top to bottom.	$\begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} \rightarrow m1$	$\begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}$
An empty (void) element in List1 or Matrix1 produces a void element	cumulativeSum(m1)	1 2
in the resulting list or matrix. For more information on empty elements, see page 132.		4 6
		9 12

Cvcle

Catalog > 2 2

5000

Catalog > 23

Cycle

Transfers control immediately to the next iteration of the current loop (For, While, or Loop).

Cycle is not allowed outside the three looping structures (For, While, or Loop).

Note for entering the example: In the Calculator application on the handheld, you can enter multi-line definitions by pressing [+-] instead of enter at the end of each line. On the computer keyboard, Function listing that sums the integers from 1 to 100 skipping

Define g()=FuncDone Local temp,i $0 \rightarrow temp$ For i, 1, 100, 1If i = 50Cvcle $temp+i \rightarrow temp$ EndFor Return temp EndFunc

▶Cylind

g()

Vector >Cylind

hold down Alt and press Enter.

Note: You can insert this operator from the computer keyboard by typing @>Cylind.

Displays the row or column vector in cylindrical form $[r, \angle \theta, z]$.

Vector must have exactly three elements. It can be either a row or a column.

[2 2 3]▶Cylind 2.82843 ∠0.785398 3.

dbd()		Catalog > 🔯
dbd(date1,date2) ⇒ value	dbd(12.3103,1.0104)	1
Returns the number of days between $date1$ and $date2$ using the actual-day-count method.	dbd(1.0107,6.0107)	151
date1 and date2 can be numbers or lists of numbers within the range of the date3 on the standard calendar. If both date1 and date2 are	dbd(3112.03,101.04)	1
lists, they must be the same length.	dbd(101.07,106.07)	151

date1 and date2 must be between the years 1950 through 2049.

You can enter the dates in either of two formats. The decimal placement differentiates between the date formats.

MM.DDYY (format used commonly in the United States) DDMM.YY (format use commonly in Europe)

	Catalog > 🕎
In Degree angle mode:	
(1.5°)▶DD	1.5°
(45°22'14.3")▶DD ({45°22'14.3",60°0'0"})▶DD	45.3706°
11	45.3706°,60°}
In Gradian angle mode:	
1▶DD	$\frac{9}{10}^{\circ}$
In Radian angle mode:	85.9437°
	In Degree angle mode:

Decimal		Catalog > 📳
Number1 ▶Decimal ⇒ value		0.222222
List1 ▶Decimal ⇒ value	¹ ▶Decimal	0.333333
Matrix1 ▶Decimal ⇒ value	3	

Note: You can insert this operator from the computer keyboard by typing @>Decimal.

Displays the argument in decimal form. This operator can be used only at the end of the entry line.

Define	Catalog > 🕡
Define Var = Expression	
Define Function(Param1, Param2,) = Expression	Define $g(x,y)=2\cdot x-3\cdot y$ Done
Defines the variable ${\it Var}$ or the user-defined function ${\it Function}$.	g(1,2) -4
Parameters, such as <i>Param1</i> , provide placeholders for passing arguments to the function. When calling a user-defined function,	$1 \to a: 2 \to b: g(a,b)$
must supply arguments (for example, values or variables) that	Define $h(x)$ =when($x<2,2\cdot x-3,-2\cdot x+3$) Done
correspond to the parameters. When called, the function evaluate Expression using the supplied arguments.	h(-3)
Var and Function cannot be the name of a system variable or builfunction or command.	t-in $h(4)$

Note: This form of **Define** is equivalent to executing the expression: expression → Function(Param1, Param2).

Define Catalog > 23 Define Function(Param1, Param2, ...) = Func Define g(x,y)=Func Done Rlock If x>v Then EndFunc Return x Define Program(Param1, Param2, ...) = Prgm Else Return y EndPram EndIf In this form, the user-defined function or program can execute a block of multiple statements. EndFunc g(3,-7)Block can be either a single statement or a series of statements on 3 separate lines. Block also can include expressions and instructions (such as If, Then, Else, and For). Define g(x,y)=Prgm Note for entering the example: In the Calculator application on the handheld, you can enter multi-line definitions by pressing 4 If x>y Then instead of enter at the end of each line. On the computer keyboard, Disp x," greater than ",yhold down Alt and press Enter. Note: See also Define LibPriv, page 28, and Define LibPub, Disp x," not greater than ",ypage 28. EndIf EndPrgm Done g(3,-7)3 greater than -7 Done

Define LibPriv Catalog > 23

Define LibPriv Var = Expression

Define LibPriv Function(Param1, Param2, ...) = Expression

Define LibPriv Function(Param1, Param2, ...) = Func

Block

EndFunc

Define LibPriv Program(Param1, Param2, ...) = Prgm

EndPrgm

Operates the same as **Define**, except defines a private library variable, function, or program. Private functions and programs do not appear in the Catalog.

Note: See also Define, page 27, and Define LibPub, page 28.

Define LibPub Catalog > 22

Define LibPub Var = Expression

Define LibPub Function(Param1, Param2, ...) = Expression

Define LibPub Function(Param1, Param2, ...) = Func Block

EndFunc

Define LibPub Program(Param1, Param2, ...) = Prgm

Block

EndPrgm

Operates the same as **Define**, except defines a public library variable, function, or program. Public functions and programs appear in the Catalog after the library has been saved and refreshed.

Note: See also Define, page 27, and Define LibPriv, page 28.

deltaList() See Δ **List()**, page 55.

DelVar		Catalog > 📆
DelVar <i>Var1</i> [, <i>Var2</i>] [, <i>Var3</i>] DelVar <i>Var</i> . Deletes the specified variable or variable group from memory. If one or more of the variables are locked, this command displays an error message and deletes only the unlocked variables. See unLock , page 110.	$\frac{2 \to a}{(a+2)^2}$ DelVar a $\frac{(a+2)^2}{(a+2)^2}$	2 16 Done "Error: Variable is not defined"
DelVar Var. deletes all members of the Var. variable group (such as the statistics stat.nm results or variables created using the LibShortcut() function). The dot (.) in this form of the DelVar command limits it to deleting a variable group; the simple variable Var is not affected.	aa.a:=45 aa.b:=5.67 aa.c:=78.9	45 5.67 78.9
	getVarInfo() DelVar aa.	[aa.a "NUM" "[]"] aa.b "NUM" "[]"] aa.c "NUM" "[]"] Done
	getVarInfo()	"NONE"

delVoid()		Catalog > [2]
$delVoid(List1) \Rightarrow list$	delVoid({1,void,3})	{1,3}

Returns a list that has the contents of List1 with all empty (void) elements removed.

If Tolerance is omitted or not used, the default tolerance is

For more information on empty elements, see page 132.

det()		Catalog > 🕎 🕽
det(squareMatrix[, Tolerance]) ⇒ expression		
Returns the determinant of squareMatrix.	$\det \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$	-2
Optionally, any matrix element is treated as zero if its absolute value is less than <i>Tolerance</i> . This tolerance is used only if the matrix has floating-point entries and does not contain any symbolic variables that have not been assigned a value. Otherwise, <i>Tolerance</i> is ignored.	$ \begin{bmatrix} 1.E20 & 1 \\ 0 & 1 \end{bmatrix} \rightarrow mat1 $ $ \det(mat1) $	$ \begin{bmatrix} 1.e20 & 1 \\ 0 & 1 \end{bmatrix} $
If you use ctrl enter or set the Auto or Approximate mode to Approximate, computations are done using floating-	det(mat1,.1)	1. E 20

5E-14 · max(dim(squareMatrix)) · rowNorm(squareMatrix)

point arithmetic.

calculated as:

diag()		Catalog	> [a]	[3]
	diag([2 4 6])	-	0	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$
Returns a matrix with the values in the argument list or matrix in its main diagonal.		[0	0	6]
diag(squareMatrix) ⇒ rowMatrix	4 6 8	[4	6	8
Returns a row matrix containing the elements from the main diagonal of <i>squareMatrix</i> .	1 2 3	1	2	3
squareMatrix must be square.	[5 7 9]	_5	7	9]
	$\operatorname{diag}(Ans)$	[4	2	9]

dim()		Catalog >
dim(List) ⇒ integer	dim({0,1,2})	3
Returns the dimension of List.	um((°,1,2))	
dim(Matrix) ⇒ list	<u> </u>	{3,2}
Returns the dimensions of matrix as a two-element list {rows, columns}.	$\dim \begin{bmatrix} 1 & 1 \\ 2 & -2 \\ 3 & 5 \end{bmatrix}$	
dim(String) ⇒ integer	dim("Hello")	5
Returns the number of characters contained in character string	dim("Hello "&"there")	11
String.	unity richo & there /	11

Disp	Catalog > 🕡 🕽
Disp [exprOrString1] [, exprOrString2] Displays the arguments in the Calculator history. The arguments are displayed in succession, with thin spaces as separators. Useful mainly in programs and functions to ensure the display of intermediate calculations. Note for entering the example: In the Calculator application on the handheld, you can enter multi-line definitions by pressing — instead of enter at the end of each line. On the computer keyboard, hold down Alt and press Enter.	Define chars(start,end)=Prgm
	Done

DMS
Catalog > Page
Value DMS
In Degree apple mode:

Value ▶DMS List ▶DMS Matrix ▶DMS

Note: You can insert this operator from the computer keyboard by typing @>DMS.

Interprets the argument as an angle and displays the equivalent DMS (DDDDDD o MM'SS.ss'') number. See o , ', '' on page 128 for DMS (degree, minutes, seconds) format.

Note: PDMS will convert from radians to degrees when used in radian mode. If the input is followed by a degree symbol on, no conversion will occur. You can use PDMS only at the end of an entry line

ii begree aligie illoue.	
(45.371)▶DMS	45°22'15.6"
({45.371,60})▶DMS	{45°22'15.6",60°}

dotP()		Catalog > 🕎
dotP(List1, List2) ⇒ expression	dotP({1,2},{5,6})	17
Returns the "dot" product of two lists.	dotr([1,2],[3,0])	
dotP(Vector1, Vector2) ⇒ expression	dotP([1 2 3],[4 5 6])	22
Returns the "dot" product of two vectors.	dotP([1 2 3],[4 3 6])	32
Both must be row vectors, or both must be column vectors.		

E

e^()		e ^x key
e^(Value1) ⇒ value	1	2.71828
Returns e raised to the Value 1 power.	e ¹	2.71020
Note: See also e exponent template, page 2.	e^{3^2}	8103.08
Note: Pressing e^x to display $e^{(i)}$ is different from pressing the character E on the keyboard.		
You can enter a complex number in $\mathbf{r}^{i\theta}$ polar form. However, use this form in Radian angle mode only; it causes a Domain error in Degree or Gradian angle mode.		
e^(List1) ⇒ list	$e^{\{1,1.,0.5\}}$	{2.71828,2.71828,1.64872}
Returns e raised to the power of each element in List1.	e (1,1.,0.3)	[2.71020,2.71020,1.04072]

e^(squareMatrix1) ⇒ squareMatrix

Returns the matrix exponential of squareMatrix1. This is not the same as calculating e raised to the power of each element. For information about the calculation method, refer to $\cos(b)$.

squareMatrix1 must be diagonalizable. The result always contains floating-point numbers.

_						
П						
	1	5	3	782.209	559.617	456.509 396.521
	4	2	1	680.546	488.795	396.521
e	6	-2	1	524.929	371.222	307.879
_						

eff() Catalog > [1]

 $eff(nominalRate, CpY) \Rightarrow value$

Financial function that converts the nominal interest rate nominal Rate to an annual effective rate, given CpY as the number of compounding periods per year.

nominalRate must be a real number, and CpY must be a real number > 0

Note: See also nom(), page 69.

eigVc() Catalog > als

eigVc(squareMatrix) ⇒ matrix

Returns a matrix containing the eigenvectors for a real or complex squareMatrix, where each column in the result corresponds to an eigenvalue. Note that an eigenvector is not unique; it may be scaled by any constant factor. The eigenvectors are normalized, meaning that if $V = [x_1, x_2, \dots, x_p]$, then:

$$x_1^2 + x_2^2 + ... + x_n^2 = 1$$

squareMatrix is first balanced with similarity transformations until the row and column norms are as close to the same value as possible. The squareMatrix is then reduced to upper Hessenberg form and the eigenvectors are computed via a Schur factorization.

In Rectangular Complex Format:

Ī	-1	2	5]	[-1	2	5]
	3	-6	$9 \rightarrow m1$	3	-6	9
	2	-5	7	2	-5	7]

5 90398

eigVc(m1)

To see the entire result, press \triangle and then use \blacktriangleleft and \blacktriangleright to move the cursor.

eigVI() Catalog > [[3]

eigVl(squareMatrix) ⇒ list

Returns a list of the eigenvalues of a real or complex squareMatrix.

squareMatrix is first balanced with similarity transformations until the row and column norms are as close to the same value as possible. The squareMatrix is then reduced to upper Hessenberg form and the eigenvalues are computed from the upper Hessenberg matrix. In Rectangular complex format mode:

-1	2	5	-1	2	5
3	-6	$9 \rightarrow m1$	3	-6	9
2	-5	7	2	-5	7]

eigVl(m1)

To see the entire result, press ▲ and then use ◀ and ▶ to move the cursor.

Else See If, page 45.

Elself	Catalog > [a][2]
If BooleanExpr1 Then Block1 Elself BooleanExpr2 Then Block2 :: Elself BooleanExprN Then BlockN EndIf :: Note for entering the example: In the Calculator application on the handheld, you can enter multi-line definitions by pressing — instead of enter at the end of each line. On the computer keyboard, hold down Alt and press Enter.	Define $g(x)$ =Func If $x \le -5$ Then Return 5 Elself $x \ge -5$ and $x < 0$ Then Return x Elself $x \ge 0$ and $x \ne 10$ Then Return x Elself $x = 10$ Then Return x Endlf EndFunc
EndFor	See For, page 38.
EndFunc	See Func, page 40.
EndIf	See If, page 45.
EndLoop	See Loop, page 60.
EndPrgm	See Prgm, page 77.
EndTry	See Try, page 106.
EndWhile	See While, page 112.

euler()

Catalog > 23

euler(Expr, Var, depVar, {Var0 VarMax}, depVar0, VarStep
[, eulerStep])

matrix

euler(SystemOfExpr, Var, ListOfDepVars, {Var0, VarMax}, ListOfDepVars0, VarStep [, eulerStep]) ⇒ matrix

euler(ListOfExpr, Var, ListOfDepVars, {Var0, VarMax}, ListOfDepVars0, VarStep [, eulerStep]) ⇒ matrix

Uses the Euler method to solve the system

$$\frac{d \, dep \, Var}{d \, Var} = Expr(Var, \, dep \, Var)$$

with depVar(Var0)=depVar0 on the interval [Var0,VarMax]. Returns a matrix whose first row defines the Var output values and whose second row defines the value of the first solution component at the corresponding Var values, and so on.

Expr is the right-hand side that defines the ordinary differential equation (ODE).

SystemOfExpr is the system of right-hand sides that define the system of ODEs (corresponds to order of dependent variables in ListOfDepVars).

ListOfExpr is a list of right-hand sides that define the system of ODEs (corresponds to the order of dependent variables in ListOfDepVars).

Var is the independent variable.

ListOfDepVars is a list of dependent variables.

 $\{Var\theta, VarMax\}$ is a two-element list that tells the function to integrate from $Var\theta$ to VarMax.

ListOfDepVars0 is a list of initial values for dependent variables.

VarStep is a nonzero number such that sign(VarStep) =

sign(*VarMax-Var0*) and solutions are returned at *Var0+i-VarStep* for all i=0,1,2,... such that *Var0+i-VarStep* is in [*var0,VarMax*] (there may not be a solution value at *VarMax*).

eulerStep is a positive integer (defaults to 1) that defines the number of euler steps between output values. The actual step size used by the euler method is VarStep/eulerStep. Differential equation:

y'=0.001*y*(100-y) and y(0)=10

euler
$$(0.001 \cdot y \cdot (100 - y), t, y, \{0,100\}, 10, 1)$$

$$\begin{bmatrix} 0. & 1. & 2. & 3. & 4. \\ 10. & 10.9 & 11.8712 & 12.9174 & 14.042 \end{bmatrix}$$

To see the entire result, press \triangle and then use \blacktriangleleft and \blacktriangleright to move the cursor.

System of equations:

$$\begin{cases} yI' = -yI + 0.1 \cdot yI \cdot y2 \\ y2 = 3 \cdot y2 - yI \cdot y2 \end{cases}$$

with vI(0)=2 and v2(0)=5

euler
$$\begin{cases} yI+0.1 \cdot yI \cdot y2 \\ 3 \cdot y2-yI \cdot y2 \end{cases}$$
 $I, \{yI,y2\}, \{0,5\}, \{2,5\}, 1 \}$ $\begin{bmatrix} 0. & 1. & 2. & 3. & 4. & 5. \\ 2. & 1. & 1. & 3. & 27. & 243. \\ 5. & 10. & 30. & 90. & 90. & -2070. \end{bmatrix}$

Catalog > 2 Exit Function listing: Exits the current For, While, or Loop block. Define g() Func Done Local temp,i Exit is not allowed outside the three looping structures (For, While, $0 \rightarrow temp$ Note for entering the example: In the Calculator application For i.1.100.1 on the handheld, you can enter multi-line definitions by pressing | temp+i → temp instead of enter at the end of each line. On the computer keyboard, If temp > 20 Then hold down Alt and press Enter. Exit EndIf EndFor EndFunc 21 g

Exit

exp(Value1) ⇒ value	1	2.71828
Returns e raised to the Value1 power.	e ¹	2.71020
Note: See also e exponent template, page 2.	e^{3^2}	8103.08
You can enter a complex number in re $^{i\theta}$ polar form. However, use this form in Radian angle mode only; it causes a Domain error in Degree or Gradian angle mode.	<u>e</u>	
$exp(ListI) \Rightarrow list$	{1,1.,0.5}	{2.71828,2.71828,1.64872}
Returns ${f e}$ raised to the power of each element in $List1$.	e (1,1.,0.5)	[2.71020,2.71020,1.04072]
exp(squareMatrix1) ⇒ squareMatrix	1 5 3	782.209 559.617 456.509
Returns the matrix exponential of <i>squareMatrix1</i> . This is not the same as calculating e raised to the power of each element. For	4 2 1	680.546 488.795 396.521
information about the calculation method, refer to cos() .	e ^[6 -2 1]	524.929 371.222 307.879

expr()		Catalog > 📆 🖟
expr(String) ⇒ expression	"Define cube(x)=x^3" -	→ funcstr
Returns the character string contained in $String$ as an expression and immediately executes it.	"Define cube(x)= x^3	
	expr(funcstr)	Done
	cube(2)	8

ExpReg Catalog > [1]2

ExpReg X, Y [, [Freq] [, Category, Include]]

exp()

floating-point numbers.

Computes the exponential regression $y = a \cdot (b)^X$ on lists X and Y with frequency Freq. A summary of results is stored in the stat.results variable. (See page 98.)

squareMatrix1 must be diagonalizable. The result always contains

All the lists must have equal dimension except for Include.

X and Y are lists of independent and dependent variables.

Freq is an optional list of frequency values. Each element in Freq specifies the frequency of occurrence for each corresponding X and Y data point. The default value is 1. All elements must be integers \geq 0.

Category is a list of numeric or string category codes for the corresponding X and Y data.

Include is a list of one or more of the category codes. Only those data items whose category code is included in this list are included in the calculation.

For information on the effect of empty elements in a list, see "Empty (Void) Elements" on page 132.

Output variable	Description
stat.RegEqn	Regression equation: a • (b) ^X
stat.a, stat.b	Regression coefficients
stat.r ²	Coefficient of linear determination for transformed data
stat.r	Correlation coefficient for transformed data (x, ln(y))

ex key

Output variable	Description
stat.Resid	Residuals associated with the exponential model
stat.ResidTrans	Residuals associated with linear fit of transformed data
stat.XReg	List of data points in the modified X List actually used in the regression based on restrictions of Freq, Category List, and Include Categories
stat.YReg	List of data points in the modified Y List actually used in the regression based on restrictions of Freq, Category List, and Include Categories
stat.FreqReg	List of frequencies corresponding to stat.XReg and stat.YReg

F

factor()		Catalog > 🕎 🖁
factor (<i>rationalNumber</i>) returns the rational number factored into primes. For composite numbers, the computing time grows	factor(152417172689)	123457 · 1234577
exponentially with the number of digits in the second-largest factor. For example, factoring a 30-digit integer could take more than a day,	isPrime(152417172689)	false

To stop a calculation manually,

 Windows®: Hold down the F12 key and press Enter repeatedly.

and factoring a 100-digit number could take more than a century.

- Macintosh®: Hold down the F5 key and press Enter repeatedly.
- **Handheld:** Hold down the **on** key and press **enter** repeatedly.

If you merely want to determine if a number is prime, use **isPrime()** instead. It is much faster, particularly if *rationalNumber* is not prime and if the second-largest factor has more than five digits.

FCdf() Catalog > [a] 2

Fcdf(lowBound,upBound,dfNumer,dfDenom) ⇒ number if lowBound and upBound are numbers, list if lowBound and upBound are lists

 $\label{eq:continuity} \textbf{FCdf}(lowBound, upBound, dfNumer, dfDenom)} \implies number \ if \\ lowBound \ and \ upBound \ are \ numbers, \\ list \ if \ lowBound \ and \\ upBound \ are \\ lists$

Computes the F distribution probability between lowBound and upBound for the specified dfNumer (degrees of freedom) and dfDenom.

For $P(X \le upBound)$, set lowBound = 0.

Fill		Catalog > 🕎 🕽
$ \begin{aligned} \textbf{Fill Value, } & \textit{matrixVar} \implies \textit{matrix} \\ & \textit{Replaces each element in variable } & \textit{matrixVar} \ \textit{with Value}. \\ & \textit{matrixVar} \ \textit{must already exist.} \end{aligned} $	$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \rightarrow amatrix$ Fill 1.01, amatrix	[1 2 3 4]
	amatrix	$ \begin{bmatrix} 1.01 & 1.01 \\ 1.01 & 1.01 \end{bmatrix} $

Fill		Catalog > 📆 🖁
Fill Value, listVar \Rightarrow list	$\{1,2,3,4,5\} \rightarrow alist$	{1,2,3,4,5}
Replaces each element in variable listVar with Value.	(1,2,3,1,3)	(1,2,5,1,5)

FiveNumSummary

listVar must already exist.

Catalog > 🔯

FiveNumSummary X[,[Freq][,Category,Include]]

Provides an abbreviated version of the 1-variable statistics on list X. A summary of results is stored in the stat.results variable. (See page 98.)

X represents a list containing the data.

Freq is an optional list of frequency values. Each element in Freq specifies the frequency of occurrence for each corresponding X and Y data point. The default value is 1.

 ${\it Category}$ is a list of numeric category codes for the corresponding ${\it X}$ data.

Include is a list of one or more of the category codes. Only those data items whose category code is included in this list are included in the calculation.

An empty (void) element in any of the lists *X*, *Freq*, or *Category* results in a void for the corresponding element of all those lists. For more information on empty elements, see page 132.

Output variable	Description
stat.MinX	Minimum of x values.
stat.Q ₁ X	1st Quartile of x.
stat.MedianX	Median of x.
stat.Q ₃ X	3rd Quartile of x.
stat.MaxX	Maximum of x values.

floor()		Catalog > [[2]
$floor(Value1) \Rightarrow integer$	floor(-2.14)	-3,
Returns the greatest integer that is \leq the argument. This function is identical to $\textbf{int()}$.		

floor(List1) \Rightarrow list floor(Matrix1) \Rightarrow matrix

Returns a list or matrix of the floor of each element.

The argument can be a real or a complex number.

Note: See also ceiling() and int().

	-6.}),-5.3	floor $\left\{\frac{3}{2}, 0\right\}$	
floor $\begin{bmatrix} 1.2 & 3.4 \\ 2.5 & 4.8 \end{bmatrix}$ $\begin{bmatrix} 1. \\ 2. \end{bmatrix}$	3. 4.	3.4 4.8	floor $\begin{bmatrix} 1.2 \\ 2.5 \end{bmatrix}$	

Catalo	g > 🔯
Define g()=Func Local tempsum, step, i	Done
$0 \rightarrow tempsum$ $1 \rightarrow stan$	
*	
tempsum+i → tempsum	
EndFor	
EndFunc	5050
	Define $g()$ =Func Local $tempsum, step, i$ $0 \rightarrow tempsum$ $1 \rightarrow step$ For $i, 1, 100, step$ $tempsum + i \rightarrow tempsum$ EndFor

format()		Catalog > [1][2]
format(Value[, formatString]) ⇒ string	format(1.234567, "f3")	"1.235"
Returns Value as a character string based on the format template.	format(1.234567, "s2")	"1.23E0"
formatString is a string and must be in the form: "F[n]", "S[n]", "E[n]", "G[n][c]", where [] indicate optional portions.	format(1.234567, "e3")	"1.235E0"
$\mbox{\sf F[n]:}$ Fixed format. n is the number of digits to display after the decimal point.	format(1.234567, "g3")	"1.235"
	format(1234.567, "g3")	"1,234.567"
S[n]: Scientific format. n is the number of digits to display after the decimal point.	format(1.234567, "g3,r:")	"1:235"
E[n]: Engineering format. n is the number of digits after the first significant digit. The exponent is adjusted to a multiple of three, and the decimal point is moved to the right by zero, one, or two digits.		
G[n][c]: Same as fixed format but also separates digits to the left of the radix into groups of three. c specifies the group separator character and defaults to a comma. If c is a period, the radix will be shown as a comma.		

fPart()		Catalog > ৄিুুু
fPart($Exprl$) \Rightarrow $expression$ fPart($Listl$) \Rightarrow $list$	fPart(-1.234)	-0.234
fPart(<i>Matrix1</i>) ⇒ <i>matrix</i>	fPart({1,-2.3,7.003})	{0,-0.3,0.003}
Returns the fractional part of the argument.		

neturns the fractional part of the argument.

For a list or matrix, returns the fractional parts of the elements.

[Rc]: Any of the above specifiers may be suffixed with the Rc radix flag, where c is a single character that specifies what to substitute for

instead of enter at the end of each line. On the computer keyboard,

hold down Alt and press Enter.

The argument can be a real or a complex number.

the radix point.

FPdf() Catalog > [1]

FPdf(XVal,dfNumer,dfDenom) \Rightarrow number if XVal is a number, list if XVal is a list

Computes the F distribution probability at XVal for the specified dfNumer (degrees of freedom) and dfDenom.

freqTable list()

Catalog > 23

freqTable→list(List1, freqIntegerList) ⇒ list

Returns a list containing the elements from *List1* expanded according to the frequencies in *freqIntegerList*. This function can be used for building a frequency table for the Data & Statistics application.

List1 can be any valid list.

freqIntegerList must have the same dimension as List1 and must contain non-negative integer elements only. Each element specifies the number of times the corresponding List1 element will be repeated in the result list. A value of zero excludes the corresponding List1 element

Note: You can insert this function from the computer keyboard by typing **freqTable@>list(...)**.

Empty (void) elements are ignored. For more information on empty elements, see page 132.

freqTable
$$\blacktriangleright$$
 list($\{1,2,3,4\},\{1,4,3,1\}$)
$$\{1,2,2,2,2,3,3,3,4\}$$
freqTable \blacktriangleright list($\{1,2,3,4\},\{1,4,0,1\}$)
$$\{1,2,2,2,2,4\}$$

frequency()

Catalog > [3]

frequency(List1,binsList) ⇒ list

Returns a list containing counts of the elements in *List1*. The counts are based on ranges (bins) that you define in *binsList*.

If binsList is $\{b(1), b(2), ..., b(n)\}$, the specified ranges are $\{? \le b(1), b(1) < ? \le b(2), ..., b(n-1) < ? \le b(n), b(n) > ?\}$. The resulting list is one element longer than binsList.

Each element of the result corresponds to the number of elements from List1 that are in the range of that bin. Expressed in terms of the **countif()** function, the result is { countif(list, $?\le b(1)$), countif(list, $b(1)<?\le b(2)$), ..., countif(list, $b(n-1)<?\le b(n)$), countif(list, b(n)>?)}.

Elements of List1 that cannot be "placed in a bin" are ignored. Empty (void) elements are also ignored. For more information on empty elements, see page 132.

Within the Lists & Spreadsheet application, you can use a range of cells in place of both arguments.

Note: See also countif(), page 23.

Explanation of result:

- 2 elements from Datalist are ≤2.5
- **4** elements from Datalist are >2.5 and \leq 4.5
- 3 elements from Datalist are >4.5

The element "hello" is a string and cannot be placed in any of the defined bins.

FTest_2Samp

Catalog > 🚉

FTest_2Samp List1,List2[,Freq1[,Freq2[,Hypoth]]]
FTest_2Samp List1,List2[,Freq1[,Freq2[,Hypoth]]]

(Data list input)

FTest_2Samp sx1,n1,sx2,n2[,Hypoth] FTest_2Samp sx1,n1,sx2,n2[,Hypoth]

(Summary stats input)

Performs a two-sample F test. A summary of results is stored in the *stat.results* variable. (See page 98.)

For H_a : $\sigma 1 > \sigma 2$, set Hypoth > 0

For H_a : $\sigma 1 \neq \sigma 2$ (default), set Hypoth = 0

For H_a : $\sigma 1 < \sigma 2$, set Hypoth < 0

Output variable	Description
stat. F	Calculated $oldsymbol{F}$ statistic for the data sequence
stat.PVal	Smallest level of significance at which the null hypothesis can be rejected
stat.dfNumer	numerator degrees of freedom = n1-1
stat.dfDenom	denominator degrees of freedom = n2-1
stat.sx1, stat.sx2	Sample standard deviations of the data sequences in List 1 and List 2
stat.x1_bar stat.x2_bar	Sample means of the data sequences in List 1 and List 2
stat.n1, stat.n2	Size of the samples

Func Catalog > [a][3]

Func Block EndFunc

Template for creating a user-defined function.

Block can be a single statement, a series of statements separated with the ":" character, or a series of statements on separate lines. The function can use the **Return** instruction to return a specific result.

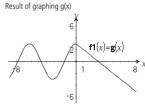
Note for entering the example: In the Calculator application on the handheld, you can enter multi-line definitions by pressing 🚭

instead of enter at the end of each line. On the computer keyboard, hold down **Alt** and press **Enter**.

Define a piecewise function:

Define g(x)=Func If x < 0 Then

Return $3 \cdot \cos(x)$


Done

Else

Return 3-x

EndIf

EndFunc

gcd()		Catalog > 📆 🖟
gcd(Number1, Number2) ⇒ expression	gcd(18,33)	3
Returns the greatest common divisor of the two arguments. The gcd of two fractions is the gcd of their numerators divided by the lcm of	8(,)	

their denominators.

In Auto or Approximate mode, the **gcd** of fractional floating-point numbers is 1.0.

gcd(List1, List2) ⇒ list

Returns the greatest common divisors of the corresponding elements in *List1* and *List2*.

gcd(Matrix1, Matrix2) ⇒ matrix

Returns the greatest common divisors of the corresponding elements in *Matrix1* and *Matrix2*.

gcd({12,14,16},{9,7,5})	{3,7,1}
-------------------------	---------

$$\gcd\begin{bmatrix}2 & 4\\6 & 8\end{bmatrix},\begin{bmatrix}4 & 8\\12 & 16\end{bmatrix}$$

$$\begin{bmatrix}2 & 4\\6 & 8\end{bmatrix}$$

aeomCdf() Catalog > 22

geomCdf(p,lowBound,upBound) ⇒ number if lowBound and upBound are numbers, list if lowBound and upBound are lists

geomCdf(p**,**upBound**)** for P($1 \le X \le upBound$) $\Rightarrow number$ if upBound is a number, list if upBound is a list

Computes a cumulative geometric probability from lowBound to upBound with the specified probability of success p.

For $P(X \le upBound)$, set lowBound = 1.

aeomPdf() Catalog > 23

geomPdf($p_{\bullet}XVal$) \Rightarrow number if XVal is a number, list if XVal is a list

Computes a probability at XVal, the number of the trial on which the first success occurs, for the discrete geometric distribution with the specified probability of success p.

getDenom()		Catalog > 📆
getDenom(Fraction1) ⇒ value	x:=5: y:=6	6
Transforms the argument into an expression having a reduced common denominator, and then returns its denominator.	$ getDenom\left(\frac{x+2}{y-3}\right) $	3
	$getDenom\left(\frac{2}{7}\right)$	7
	getDenom $\left(\frac{1}{x} + \frac{y^2 + y}{y^2}\right)$	30

getLangInfo() Catalog >

getLangInfo() ⇒ string

getLangInfo() Returns a string that corresponds to the short name of the currently active language. You can, for example, use it in a program or function to determine the current language.

Enalish = "en" Danish = "da" German = "de"

Finnish = "fi" French = "fr"

Italian = "it" Dutch = "nl"

Belgian Dutch = "nl BE"

Norwegian = "no" Portuguese = "pt"

Spanish = "es'

Swedish = "sv"

"en"

getLockInfo()		Catalog > [a][2]
$getLockInfo(Var) \Rightarrow value$ Returns the current locked/unlocked state of variable Var .	a:=65	65
 value = 0: Var is unlocked or does not exist. value = 1: Var is locked and cannot be modified or deleted. See Lock, page 57, and unLock, page 110. 	Lock a	Done
	getLockInfo(a)	1
	a:=75	"Error: Variable is locked."
	DelVar a	"Error: Variable is locked."
	Unlock a	Done
	a:=75	75
	DelVar a	Done

getMode()		Catalog > 🚉
$getMode(ModeNameInteger) \Rightarrow value$ $getMode(0) \Rightarrow list$	getMode(0)	{1,1,2,1,3,1,4,1,5,1,6,1,7,1}
getMode(ModeNameInteger) returns a value representing the current setting of the ModeNameInteger mode. getMode(0) returns a list containing number pairs. Each pair consists of a mode integer and a setting integer.	getMode(1)	1
	getMode(7)	1

If you save the settings with $\mathbf{getMode(0)} \rightarrow var$, you can use $\mathbf{setMode}(var)$ in a function or program to temporarily restore the settings within the execution of the function or program only. See $\mathbf{setMode()}$, page 91.

For a listing of the modes and their settings, refer to the table below.

Mode Name	Mode Integer	Setting Integers
Display Digits	1	1=Float, 2=Float1, 3=Float2, 4=Float3, 5=Float4, 6=Float5, 7=Float6, 8=Float7, 9=Float8, 10=Float9, 11=Float10, 12=Float11, 13=Float12, 14=Fix0, 15=Fix1, 16=Fix2, 17=Fix3, 18=Fix4, 19=Fix5, 20=Fix6, 21=Fix7, 22=Fix8, 23=Fix9, 24=Fix10, 25=Fix11, 26=Fix12
Angle	2	1=Radian, 2=Degree, 3=Gradian
Exponential Format	3	1=Normal, 2=Scientific, 3=Engineering
Real or Complex	4	1=Real, 2=Rectangular, 3=Polar
Auto or Approx.	5	1=Auto, 2=Approximate
Vector Format	6	1=Rectangular, 2=Cylindrical, 3=Spherical
Base	7	1=Decimal, 2=Hex, 3=Binary

getNum()		Catalog > 📆 🖟
$getNum(Fraction1) \Rightarrow value$	x:=5: y:=6	6
Transforms the argument into an expression having a reduced common denominator, and then returns its numerator.	$\frac{x \cdot 3 \cdot y \cdot 6}{\text{getNum} \left(\frac{x+2}{y-3}\right)}$	7
	$getNum\left(\frac{2}{7}\right)$	2
	$ \frac{1}{\text{getNum}\left(\frac{1}{x} + \frac{1}{y}\right)} $	11

getType()		Catalog > 🕎
getType(var) \Rightarrow string	$\{1,2,3\} \rightarrow temp$	{1,2,3}
Returns a string that indicates the data type of variable var .	getType(temp)	"LIST"
If var has not been defined, returns the string "NONE".	2:3• i → temp	3· <i>i</i>
	getType(temp)	"EXPR"
	DelVar temp	Done
	getType(temp)	"NONE"

getVarInfo()	Catalog > 🚉 🕻
getVarInfo() ⇒ matrix or string getVarInfo(LibNameString) ⇒ matrix or string	getVarInfo() "NONE"
getVarInfo() returns a matrix of information (variable name, type, library accessibility, and locked/unlocked state) for all variables and library objects defined in the current problem.	Define $x=5$ Done
	Lock x Done
If no variables are defined, getVarInfo() returns the string "NONE". getVarInfo(LibNameString) returns a matrix of information for all library objects defined in library LibNameString. LibNameString must be a string (text enclosed in quotation marks) or a string variable. If the library LibNameString does not exist, an error occurs.	Define LibPriv $y = \{1,2,3\}$ Done
	Define LibPub $z(x)=3\cdot x^2-x$ Done
	[z "FUNC" "LibPub " 0]
	getVarInfo(<i>tmp3</i>)
	"Error: Argument must be a string"

getVarInfo("tmp3")

[volcyl2 "NONE" "LibPub " 0]

getVarInfo()

Note the example, in which the result of $\mathbf{getVarInfo()}$ is assigned to variable vs. Attempting to display row 2 or row 3 of vs returns an "Invalid list or matrix" error because at least one of elements in those rows (variable b, for example) revaluates to a matrix.

This error could also occur when using *Ans* to reevaluate a **getVarInfo()** result.

The system gives the above error because the current version of the software does not support a generalized matrix structure where an element of a matrix can be either a matrix or a list.

				ero.
a:=1				1
$b = \begin{bmatrix} 1 & 2 \end{bmatrix}$			[1	2]
c:=[1 3 7]			[1 3	7]
vs:=getVarInfo()	a	"NUM"	"[]"	0]
	b	"MAT"	"[]"	0
	$\lfloor c$	"MAT"	"[]"	o
vs[1]	[1	"NUM"	"[]"	0]
vs[1,1]				1
<i>vs</i> [2] "E	rror: Ir	nvalid list	or matı	ix"
vs[2,1]			1	2]

Catalog > 12

Catalog > [2]

Done

Goto lahelName

Goto

Transfers control to the label labelName.

labelName must be defined in the same function using a ${f LbI}$ instruction.

Note for entering the example: In the Calculator application on the handheld, you can enter multi-line definitions by pressing instead of enter at the end of each line. On the computer keyboard, hold down Alt and press Enter.

Define g()=Func

Local temp,i

 $0 \rightarrow temp$

 $1 \rightarrow i$

Lbl top

 $temp+i \rightarrow temp$

If *i*<10 Then

 $i+1 \rightarrow i$

Goto top

EndIf

Return temp

EndFunc

g() 55

Grad

Expr1 ▶ Grad ⇒ expression

Converts Expr1 to gradian angle measure.

Note: You can insert this operator from the computer keyboard by typing @>Grad.

In Degree angle mode:

(1.5)▶Grad

(1.66667)9

Catalog > 22

In Radian angle mode:

(1.5)▶Grad (95.493)⁹

identity()		Catalog > 📆 🖁
identity($Integer$) \Rightarrow $matrix$	identity(4)	$\begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix}$
Returns the identity matrix with a dimension of <i>Integer</i> .	, , ,	$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$
Integer must be a positive integer.		0 0 1 0
		$[0 \ 0 \ 0 \ 1]$

		$\begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$
If		Catalog > [[[]
If BooleanExpr Statement If BooleanExpr Then Block EndIf If BooleanExpr evaluates to true, executes the single statement Statement or the block of statements Block before continuing execution. If BooleanExpr evaluates to false, continues execution without executing the statement or block of statements. Block can be either a single statement or a sequence of statements separated with the ":" character. Note for entering the example: In the Calculator application on the handheld, you can enter multi-line definitions by pressing instead of enter at the end of each line. On the computer keyboard, hold down Alt and press Enter.	Define $g(x)$ =Func If x <0 Then Return x^2 EndIf EndFunc	Done 4
If BooleanExpr Then Block I Else Block 2 EndIf If BooleanExpr evaluates to true, executes Block I and then skips Block 2. If BooleanExpr evaluates to false, skips Block I but executes Block 2. Block I and Block 2 can be a single statement.	Define $g(x)$ =Func If $x < 0$ Then Return $\neg x$ Else Return x EndIf EndFunc $g(12)$ $g(-12)$	Done 12 12

If BooleanExpr1 Then

Block1 Elself BooleanExpr2 Then

Block2

ElseIf BooleanExprN Then BlockN

Fndlf

Allows for branching. If BooleanExpr1 evaluates to true, executes Block1. If BooleanExpr1 evaluates to false, evaluates BooleanExpr2, and so on.

Define g(x)=Func

If x < -5 Then

Return 5

ElseIf x > -5 and x < 0 Then

Return -x

ElseIf $x \ge 0$ and $x \ne 10$ Then

Return x

ElseIf x=10 Then

Return 3

EndIf

EndFunc

	Done
g(-4)	4
g(10)	3

ifFn()

Catalog > 🎉

ifFn(BooleanExpr,Value_If_true [,Value_If_false [,Value_If_unknown]]) ⇒ expression, list, or matrix

Evaluates the boolean expression BooleanExpr (or each element from BooleanExpr) and produces a result based on the following rules:

- BooleanExpr can test a single value, a list, or a matrix.

 If an alamant of P. J. F. analysis to the property of P. J. analysis to the property of P. ana
- If an element of BooleanExpr evaluates to true, returns the corresponding element from Value_If_true.
- If an element of BooleanExpr evaluates to false, returns the corresponding element from Value_If_false. If you omit Value_If_false, returns undef.
- If an element of BooleanExpr is neither true nor false, returns the corresponding element Value_If_unknown. If you omit Value_If_unknown, returns undef.
- If the second, third, or fourth argument of the iffn() function is a single expression, the Boolean test is applied to every position in BooleanExpr.

Note: If the simplified *BooleanExpr* statement involves a list or matrix, all other list or matrix arguments must have the same dimension(s), and the result will have the same dimension(s).

ifFn({1,2,3}<2.5,{5,6,7},{8,9,10})
{5,6,10}

Test value of **1** is less than 2.5, so its corresponding Value_If_True element of **5** is copied to the result list.

Test value of **2** is less than 2.5, so its corresponding *Value_If_True* element of **6** is copied to the result list.

Test value of **3** is not less than 2.5, so its corresponding Value_If_False element of **10** is copied to the result list.

$$\frac{}{\text{ifFn}(\{1,2,3\}<2.5,4,\{8,9,10\})} \qquad \{4,4,10\}$$

Value_If_true is a single value and corresponds to any selected position.

Value_If_false is not specified. Undef is used.

$$\overline{ifFn({2,"a"}}<2.5,{6,7},{9,10},"err") \atop {6,"err"}$$

One element selected from Value_If_true. One element selected from Value_If_unknown.

imag()

Catalog > 🚉

imag(Value1) ⇒ value

Returns the imaginary part of the argument.

 $imag(1+2\cdot i)$

 $imag({-3,4-i,i})$

2

imag(List1) ⇒ list

 $\{0, -1, 1\}$

Returns a list of the imaginary parts of the elements.

imag()		Catalog > 🕎
$imag(MatrixI) \Rightarrow matrix$		[0 0]
Returns a matrix of the imaginary parts of the elements.	$ \lim_{i \to 3} \left[\begin{bmatrix} 1 & 2 \\ i \cdot 3 & i \cdot 4 \end{bmatrix} \right] $	$\begin{bmatrix} 0 & 0 \\ 3 & 4 \end{bmatrix}$

Indirection See #(), page 127.

inString()		Catalog > [2]
$inString(srcString, subString[, Start]) \Rightarrow integer$	inString("Hello there", "the")	7
Returns the character position in string <i>srcString</i> at which the first occurrence of string <i>subString</i> begins.	inString("ABCEFG","D")	0
Start, if included, specifies the character position within $srcString$ where the search begins. Default = 1 (the first character of $srcString$).		
If srcString does not contain subString or Start is > the length of srcString, returns zero.		

int()		Catalog > 📆
int(Value) ⇒ integer int(List1) ⇒ list	int(-2.5)	-3.
$int(Matrix1) \Rightarrow matrix$	int([-1.234 0 0.37])	[-2. 0 0.]
Returns the greatest integer that is less than or equal to the		

argument. This function is identical to **floor()**.

The argument can be a real or a complex number.

For a list or matrix, returns the greatest integer of each of the elements.

intDiv() Catalog >		talog > 🔯
intDiv(Number1, Number2) \Rightarrow integer intDiv(List1, List2) \Rightarrow list intDiv(Matrix1, Matrix2) \Rightarrow matrix	intDiv(-7,2) intDiv(4,5)	-3 0
Returns the signed integer part of ($Number1 \div Number2$).	intDiv({12,-14,-16},{5,4,-3})	{2,-3,5}
For lists and matrices, returns the signed integer part of (argument 1 ÷ argument 2) for each element pair.		

interpolate()

Catalog > 2

interpolate(xValue, xList, yList, yPrimeList) ⇒ list

This function does the following:

Given xList, yList=f(xList), and yPrimeList=f'(xList) for some unknown function f, a cubic interpolant is used to approximate the function f at xValue. It is assumed that xList is a list of monotonically increasing or decreasing numbers, but this function may return a value even when it is not. This function walks through xList looking for an interval [xList[i], xList[i+1]] that contains xValue, If it finds such an interval, it returns an interpolated value for f(xValue); otherwise, it returns undef.

xList, yList, and yPrimeList must be of equal dimension ≥ 2 and contain expressions that simplify to numbers.

xValue can be a number or a list of numbers.

Differential equation: $y' = -3 \cdot y + 6 \cdot t + 5$ and y(0) = 5

 $rk = rk23(-3\cdot y + 6\cdot t + 5.t. y, \{0.10\} 5.1)$ 2. 3.19499 5.00394 6.99957 9.00593 10

To see the entire result, press ▲ and then use ◀ and ▶ to move the cursor.

Use the interpolate() function to calculate the function values for the xvaluelist:

xvaluelist:=seq(i,i,0,10,0.5)

{0,0.5,1.,1.5,2.,2.5,3.,3.5,4.,4.5,5.,5.5,6.,6.5,*

xlist:=mat | list(rk 1)

{0.,1.,2.,3.,4.,5.,6.,7.,8.,9.,10.}

 $ylist := mat \triangleright \overline{list(rk[2])}$

{5.,3.19499,5.00394,6.99957,9.00593,10.9978

 $yprimelist:=-3\cdot y+6\cdot t+5|y=ylist$ and t=xlist{-10.,1.41503,1.98819,2.00129,1.98221,2.006•

interpolate(xvaluelist,xlist,ylist,yprimelist) {5.,2.67062,3.19499,4.02782,5.00394,6.00011

$inv \chi^2$ ()

Catalog > 2

invγ²(Area,df) invChi2(Area,df)

Computes the Inverse cumulative χ^2 (chi-square) probability function specified by degree of freedom, df for a given Area under the curve.

invF()

Catalog > [1]

invF(Area,dfNumer,dfDenom) invF(Area,dfNumer,dfDenom)

computes the Inverse cumulative F distribution function specified by dfNumer and dfDenom for a given Area under the curve.

invNorm()

Catalog > 22

 $invNorm(Area[, \mu[, \sigma]])$

Computes the inverse cumulative normal distribution function for a given Area under the normal distribution curve specified by μ and σ .

invt()

invt(Area,df)

Computes the inverse cumulative student-t probability function specified by degree of freedom, df for a given Area under the curve.

iPart()		Catalog > 📆
$iPart(Number) \Rightarrow integer$ $iPart(List1) \Rightarrow list$ $iPart(Matrix1) \Rightarrow matrix$ Returns the integer part of the argument.	$\frac{iPart(-1.234)}{iPart\left\{\left\{\frac{3}{2}, -2.3, 7.003\right\}\right\}}$	$\frac{-1.}{\{1,-2.,7.\}}$

The argument can be a real or a complex number. irr() Catalog > 23 irr(CF0,CFList [,CFFreq]) ⇒ value list1:={6000,-8000,2000,-3000} Financial function that calculates internal rate of return of an {6000, -8000, 2000, -3000} investment. CFO is the initial cash flow at time 0; it must be a real number. CFList is a list of cash flow amounts after the initial cash flow CFO. irr(5000, list1, list2) -4.64484 CFFreq is an optional list in which each element specifies the frequency of occurrence for a grouped (consecutive) cash flow amount, which is the corresponding element of CFList. The default is 1; if you enter values, they must be positive integers < 10,000.

Note: See also mirr(), page 63.

isPrime()

For lists and matrices, returns the integer part of each element.

Cata	10g > [8][3]
isPrime(5)	true
isPrime(6)	false
Function to find the next prime after a specified nu	ımber:
Define <i>nextprim</i> (n)=Func	Done
Loop	
$n+1 \rightarrow n$	
If is $Prime(n)$	
Return n	
EndLoop	
EndFunc	
nextprim(7)	11
	isPrime(5) isPrime(6) Function to find the next prime after a specified number of the next prime n = Func Loop $n+1 \rightarrow n$ If isPrime(n) Return n EndLoop EndFunc

isVoid()		Catalog > 🗓 🗓
isVoid(Var) ⇒ Boolean constant expression isVoid(Expr) ⇒ Boolean constant expression	a:=_	
isVoid(List) ⇒ list of Boolean constant expressions	isVoid(a)	true
Returns true or false to indicate if the argument is a void data type.	isVoid({1,_,3})	{ false,true,false }
For more information on void elements, see page 132.		

Catalog > [3]

L

their product.

corresponding elements.

efine $g()$ =Func Local $temp, i$ $0 \rightarrow temp$ $1 \rightarrow i$	Done
Lbl top $temp+i \rightarrow temp$ If $i < 10$ Then $i+1 \rightarrow i$ Goto top EndIf	
	Local temp,i $0 \rightarrow temp$ $1 \rightarrow i$ Lbl top $temp+i \rightarrow temp$ If $i < 10$ Then $i+1 \rightarrow i$ Goto top

lcm()		Catalog > 🔯
lcm(Number1, Number2) ⇒ expression lcm(List1, List2) ⇒ list	lcm(6,9)	18
lcm(Matrix1, Matrix2) ⇒ matrix	$lcm\left\{\frac{1}{3},-14,16\right\},\left\{\frac{2}{15},7,5\right\}\right\}$	$\frac{2}{21480}$
Returns the least common multiple of the two arguments. The lcm of two fractions is the lcm of their numerators divided by the gcd of their denominators. The lcm of fractional floating-point numbers is	[3, 14,10], [15,7,3])	[3,14,00]

g()

55

left()		Catalog > 📆
left(sourceString[, Num]) ⇒ string	left("Hello",2)	"He"
Returns the leftmost <i>Num</i> characters contained in character string <i>sourceString</i> .	ierų frene ,2,	
If you omit Num, returns all of sourceString.		
left($ListI[$, $Num]$) $\Rightarrow list$	left({1,3,-2,4},3)	{1,3,-2}

Returns the leftmost Num elements contained in List1.

Returns the left-hand side of an equation or inequality.

If you omit Num, returns all of List1. **left(**Comparison**)** \Rightarrow expression

For two lists or matrices, returns the least common multiples of the

libShortcut()

libShortcut(*LibNameString*, *ShortcutNameString*[, *LibPrivFlag*]) ⇒ *list of variables*

Creates a variable group in the current problem that contains references to all the objects in the specified library document ibNameString. Also adds the group members to the Variables menu. You can then refer to each object using its ShortcutNameString.

Set LibPrivFlag=**0** to exclude private library objects (default) Set LibPrivFlag=**1** to include private library objects

To copy a variable group, see **CopyVar** on page 18. To delete a variable group, see **DelVar** on page 29.

This example assumes a properly stored and refreshed library document named **linalg2** that contains objects defined as *clearmat*, *gauss1*, and *gauss2*.

$$\begin{array}{l} libShortcut \big("linalg2", "la" \big) \\ & \big\{ \textit{la.clearmat,la.gauss2} \big\} \end{array}$$

LinRegBx

LinRegBx X,Y[,[Freq][,Category,Include]]

Computes the linear regression $y = a+b \cdot x$ on lists X and Y with frequency Freq. A summary of results is stored in the stat.results variable. (See page 98.)

All the lists must have equal dimension except for Include.

X and Y are lists of independent and dependent variables.

Freq is an optional list of frequency values. Each element in Freq specifies the frequency of occurrence for each corresponding X and Y data point. The default value is 1. All elements must be integers \geq 0.

Category is a list of numeric or string category codes for the corresponding X and Y data.

Include is a list of one or more of the category codes. Only those data items whose category code is included in this list are included in the calculation.

Output variable	Description
stat.RegEqn	Regression Equation: a+b•x
stat.a, stat.b	Regression coefficients
stat.r ²	Coefficient of determination
stat.r	Correlation coefficient
stat.Resid	Residuals from the regression
stat.XReg	List of data points in the modified X List actually used in the regression based on restrictions of Freq, Category List, and Include Categories
stat.YReg	List of data points in the modified Y List actually used in the regression based on restrictions of Freq, Category List, and Include Categories
stat.FreqReg	List of frequencies corresponding to stat.XReg and stat.YReg

LinRegMx X,Y[,[Freq][,Category,Include]]

Computes the linear regression $y = m \cdot x + b$ on lists X and Y with frequency Freq. A summary of results is stored in the stat.results variable. (See page 98.)

All the lists must have equal dimension except for Include.

X and Y are lists of independent and dependent variables.

Freq is an optional list of frequency values. Each element in Freq specifies the frequency of occurrence for each corresponding X and Y data point. The default value is 1. All elements must be integers \geq 0.

Category is a list of numeric or string category codes for the corresponding X and Y data.

Include is a list of one or more of the category codes. Only those data items whose category code is included in this list are included in the calculation.

For information on the effect of empty elements in a list, see "Empty (Void) Elements" on page 132.

Output variable	Description
stat.RegEqn	Regression Equation: $y = m \cdot x + b$
stat.m, stat.b	Regression coefficients
stat.r ²	Coefficient of determination
stat.r	Correlation coefficient
stat.Resid	Residuals from the regression
stat.XReg	List of data points in the modified X List actually used in the regression based on restrictions of Freq, Category List, and Include Categories
stat.YReg	List of data points in the modified Y List actually used in the regression based on restrictions of Freq, Category List, and Include Categories
stat.FreqReg	List of frequencies corresponding to stat.XReg and stat.YReg

LinRegtIntervals

Catalog > 🔯

LinRegtIntervals X,Y[,F[,0[,CLev]]]

For Slope. Computes a level C confidence interval for the slope.

LinRegtIntervals X,Y[,F[,1,Xval[,CLev]]]

For Response. Computes a predicted y-value, a level C prediction interval for a single observation, and a level C confidence interval for the mean response.

A summary of results is stored in the stat.results variable. (See page 98.)

All the lists must have equal dimension.

X and Y are lists of independent and dependent variables.

F is an optional list of frequency values. Each element in F specifies the frequency of occurrence for each corresponding X and Y data point. The default value is 1. All elements must be integers \geq 0.

Output variable	Description
stat.RegEqn	Regression Equation: a+b • x
stat.a, stat.b	Regression coefficients
stat.df	Degrees of freedom
stat.r ²	Coefficient of determination
stat.r	Correlation coefficient
stat.Resid	Residuals from the regression

For Slope type only

Output variable	Description
[stat.CLower, stat.CUpper]	Confidence interval for the slope
stat.ME	Confidence interval margin of error
stat.SESlope	Standard error of slope
stat.s	Standard error about the line

For Response type only

Output variable	Description
[stat.CLower, stat.CUpper]	Confidence interval for the mean response
stat.ME	Confidence interval margin of error
stat.SE	Standard error of mean response
[stat.LowerPred, stat.UpperPred]	Prediction interval for a single observation
stat.MEPred	Prediction interval margin of error
stat.SEPred	Standard error for prediction
stat. ŷ	a + b • XVal

LinRegtTest X,Y[,Freq[,Hypoth]]

Computes a linear regression on the X and Y lists and a t test on the value of slope β and the correlation coefficient ρ for the equation $y=\alpha+\beta x$. It tests the null hypothesis $H_0:\beta=0$ (equivalently, $\rho=0$) against one of three alternative hypotheses.

All the lists must have equal dimension.

X and Y are lists of independent and dependent variables.

Freq is an optional list of frequency values. Each element in Freq specifies the frequency of occurrence for each corresponding X and Y data point. The default value is 1. All elements must be integers \geq 0.

Hypoth is an optional value specifying one of three alternative hypotheses against which the null hypothesis (H_0 : β = ρ =0) will be tested

For H_a : $\beta \neq 0$ and $\rho \neq 0$ (default), set Hypoth=0For H_a : $\beta < 0$ and $\rho < 0$, set Hypoth < 0For H_a : $\beta > 0$ and $\rho > 0$, set Hypoth > 0

A summary of results is stored in the $\mathit{stat.results}$ variable. (See page 98.)

Output variable	Description
stat.RegEqn	Regression equation: a + b • x
stat.t	t-Statistic for significance test
stat.PVal	Smallest level of significance at which the null hypothesis can be rejected
stat.df	Degrees of freedom
stat.a, stat.b	Regression coefficients
stat.s	Standard error about the line
stat.SESlope	Standard error of slope
stat.r ²	Coefficient of determination
stat.r	Correlation coefficient
stat.Resid	Residuals from the regression

linSolve() Catalog > 13

linSolve(SystemOfLinearEqns, Var1, Var2, ...) ⇒ list linSolve(LinearEan1 and LinearEan2 and Var1, Var2, ...) ⇒ list

linSolve({LinearEqn1, LinearEqn2, ...}, Var1, Var2, ...) \Rightarrow list

linSolve(SystemOfLinearEqns, {Var1, Var2, ...}) → list

linSolve(LinearEqn1 and LinearEqn2 and ..., ${Var1, Var2, ...}$ $\Rightarrow list$

linSolve({LinearEan1, LinearEan2, ...}, {Var1, Var2, ...}) -> list

Returns a list of solutions for the variables Var1, Var2, ...

The first argument must evaluate to a system of linear equations or a single linear equation. Otherwise, an argument error occurs.

For example, evaluating linSolve(x=1 and x=2,x) produces an "Argument Error" result.

$$\begin{aligned}
& \lim \text{Solve} \left\{ \begin{cases} 2 \cdot x + 4 \cdot y = 3 \\ 5 \cdot x - 3 \cdot y = 7 \end{cases}, \{x, y\} \right\} & \left\{ \frac{37}{26}, \frac{1}{26} \right\} \\
& \lim \text{Solve} \left\{ \begin{cases} 2 \cdot x = 3 \\ \end{cases}, \{x, y\} \right\} & \left\{ \frac{3}{2}, \frac{1}{26} \right\} \end{aligned}$$

linSolve
$$\left\{ \begin{bmatrix} 2 \cdot x = 3 \\ 5 \cdot x - 3 \cdot y = 7 \end{bmatrix}, \left\{ x, y \right\} \right\}$$
 $\left\{ \frac{3}{2}, \frac{1}{6} \right\}$

linSolve
$$\left\{ \begin{cases} apple+4 \cdot pear=23 \\ 5 \cdot apple-pear=17 \end{cases}, \left\{ apple, pear \right\} \right\}$$

$$\left\{ \frac{13}{3}, \frac{14}{3} \right\}$$

linSolve
$$\begin{cases} apple \cdot 4 + \frac{pear}{3} = 14, \{apple, pear\} \\ -apple + pear = 6 \end{cases}$$

$$\begin{cases} \frac{36}{13}, \frac{114}{13} \end{cases}$$

Δ List() Catalog > [1]

 Δ List(List1) \Rightarrow list

Note: You can insert this function from the keyboard by typing deltaList(...).

Returns a list containing the differences between consecutive elements in List1. Each element of List1 is subtracted from the next element of List1. The resulting list is always one element shorter than the original List1.

ΔList({20,30,45,70}) {10,15,25

list>mat() Catalog > 23 list mat(List [, elementsPerRow]) ⇒ matrix

Returns a matrix filled row-by-row with the elements from List.

elementsPerRow, if included, specifies the number of elements per row. Default is the number of elements in List (one row).

If List does not fill the resulting matrix, zeros are added.

Note: You can insert this function from the computer keyboard by typing list@>mat(...).

$list \blacktriangleright mat(\{1,2,3\})$	[1	2	3]
list ▶ mat({1,2,3,4,5},2)		1	2
		3	4
		5	0
			_

In() ctrl ex kevs In(Value1) ⇒ value

In(List1) ⇒ list

Returns the natural logarithm of the argument.

For a list, returns the natural logarithms of the elements.

ln(2.)0.693147

If complex format mode is Real:

 $ln(\{-3,1,2,5\})$

"Error: Non-real calculation"

If complex format mode is Rectangular:

$$\ln(\{-3,1.2,5\})$$

 $\{1.09861+3.14159 \cdot i, 0.182322, 1.60944\}$

In() ctri ex keys

In(squareMatrix1) ⇒ squareMatrix

Returns the matrix natural logarithm of *squareMatrix1*. This is not the same as calculating the natural logarithm of each element. For information about the calculation method, refer to **cos()** on.

squareMatrix1 must be diagonalizable. The result always contains floating-point numbers.

In Radian angle mode and Rectangular complex format:

$$\ln \begin{bmatrix} 1 & 5 & 3 \\ 4 & 2 & 1 \\ 6 & -2 & 1 \end{bmatrix} \\
\begin{bmatrix} 1.83145+1.73485 \cdot \mathbf{i} & 0.009193-1.49086 \\ 0.448761-0.725533 \cdot \mathbf{i} & 1.06491+0.623491 \\ -0.266891-2.08316 \cdot \mathbf{i} & 1.12436+1.79018 \cdot \end{bmatrix}$$

To see the entire result, press ▲ and then use ◀ and ▶ to move the cursor.

LnReg Catalog > [3]

LnReg X, Y[, [Freq] [, Category, Include]]

Computes the logarithmic regression $y = a+b \cdot ln(x)$ on lists X and Y with frequency Freq. A summary of results is stored in the *stat.results* variable. (See page 98.)

All the lists must have equal dimension except for Include.

X and *Y* are lists of independent and dependent variables.

Freq is an optional list of frequency values. Each element in Freq specifies the frequency of occurrence for each corresponding X and Y data point. The default value is 1. All elements must be integers \geq 0.

Category is a list of numeric or string category codes for the corresponding X and Y data.

Include is a list of one or more of the category codes. Only those data items whose category code is included in this list are included in the calculation.

Output variable	Description
stat.RegEqn	Regression equation: a+b • ln(x)
stat.a, stat.b	Regression coefficients
stat.r ²	Coefficient of linear determination for transformed data
stat.r	Correlation coefficient for transformed data (ln(x), y)
stat.Resid	Residuals associated with the logarithmic model
stat.ResidTrans	Residuals associated with linear fit of transformed data
stat.XReg	List of data points in the modified X List actually used in the regression based on restrictions of Freq, Category List, and Include Categories
stat.YReg	List of data points in the modified Y List actually used in the regression based on restrictions of Freq, Category List, and Include Categories
stat.FreqReg	List of frequencies corresponding to stat.XReg and stat.YReg

Local Catalog > [] []

Local Var1[, Var2] [, Var3] ...

Declares the specified *vars* as local variables. Those variables exist only during evaluation of a function and are deleted when the function finishes execution.

Note: Local variables save memory because they only exist temporarily. Also, they do not disturb any existing global variable values. Local variables must be used for **For** loops and for temporarily saving values in a multi-line function since modifications on global variables are not allowed in a function.

Note for entering the example: In the Calculator application on the handheld, you can enter multi-line definitions by pressing 🗾

instead of enter at the end of each line. On the computer keyboard, hold down **Alt** and press **Enter**.

Define rollcount()=Func
Local i
$1 \rightarrow i$
Loop
If $randInt(1,6) = randInt(1,6)$
Goto end
$i+1 \rightarrow i$
EndLoop
Lbl <i>end</i>
Return i
EndFunc
Don
rollcount()

rollcount()	16
rollcount()	3

Lock Var1[, Var2] [, Var3] ... Lock Var.

Lock

Locks the specified variables or variable group. Locked variables cannot be modified or deleted.

You cannot lock or unlock the system variable *Ans*, and you cannot lock the system variable groups *stat*• or *tvm*•

Note: The **Lock** command clears the Undo/Redo history when applied to unlocked variables.

See unLock, page 110, and getLockInfo(), page 42.

a:=65	65
Lock a	Done
getLockInfo(a)	1
a:=75	"Error: Variable is locked."
DelVar a	"Error: Variable is locked."
Unlock a	Done
a:=75	75
DelVar a	Done

Catalog > [a][2]

log()
$log(Value1[,Value2]) \Rightarrow value$
$log(List1[,Value2]) \Rightarrow list$

Returns the base-Value2 logarithm of the first argument.

Note: See also Log template, page 2.

For a list, returns the base-Value2 logarithm of the elements.

If the second argument is omitted, 10 is used as the base.

$\log_{10}(2.)$	0.30103
$\log_4(2.)$	0.5
$\frac{\log_3(10) - \log_3(5)}{3}$	0.63093

If complex format mode is Real:

$$\log_{10}(\{-3,1.2,5\})$$

"Error: Non-real calculation"

ctrl 10X key

If complex format mode is Rectangular:

$$\frac{\log \left(\left\{-3,1.2,5\right\}\right)}{10} \\
\left\{0.477121+1.36438 \cdot i, 0.079181, 0.69897\right\}$$

In Radian angle mode and Rectangular complex format:

$$\log_{10} \begin{bmatrix} 1 & 5 & 3 \\ 4 & 2 & 1 \\ 6 & -2 & 1 \end{bmatrix}$$

0.795387+0.753438•*i* 0.003993-0.6474′. 0.194895-0.315095•*i* 0.462485+0.2707′? -0.115909-0.904706•*i* 0.488304+0.7774¢

To see the entire result, press ▲ and then use ◀ and ▶ to move the cursor.

log(squareMatrix1[,Value]) ⇒ squareMatrix

Returns the matrix base-Value logarithm of squareMatrix1. This is not the same as calculating the base-Value logarithm of each element. For information about the calculation method, refer to cost)

squareMatrix1 must be diagonalizable. The result always contains floating-point numbers.

If the base argument is omitted, 10 is used as base.

Logistic

Catalog > 🚉

Logistic X, Y[, [Freq] [, Category, Include]]

Computes the logistic regression $y = (c/(1+a \cdot e^{-bx}))$ on lists X and Y with frequency Freq. A summary of results is stored in the stat.results variable. (See page 98.)

All the lists must have equal dimension except for Include.

X and Y are lists of independent and dependent variables.

Freq is an optional list of frequency values. Each element in Freq specifies the frequency of occurrence for each corresponding X and Y data point. The default value is 1. All elements must be integers \geq 0.

Category is a list of numeric or string category codes for the corresponding *X* and *Y* data.

Include is a list of one or more of the category codes. Only those data items whose category code is included in this list are included in the calculation.

Output variable	Description
stat.RegEqn	Regression equation: $c/(1+a \cdot e^{-bx})$
stat.a, stat.b, stat.c	Regression coefficients
stat.Resid	Residuals from the regression
stat.XReg	List of data points in the modified X List actually used in the regression based on restrictions of Freq, Category List, and Include Categories
stat.YReg	List of data points in the modified Y List actually used in the regression based on restrictions of Freq, Category List, and Include Categories
stat.FreqReg	List of frequencies corresponding to stat.XReg and stat.YReg

LogisticD Catalog > [1]2

LogisticD X, Y [, [Iterations], [Freq] [, Category, Include]]

Computes the logistic regression $y = (c/(1+a \cdot e^{-bx})+d)$ on lists X and Y with frequency Freq, using a specified number of Iterations. A summary of results is stored in the stat.results variable. (See page 98.)

All the lists must have equal dimension except for Include.

X and Y are lists of independent and dependent variables.

Freq is an optional list of frequency values. Each element in Freq specifies the frequency of occurrence for each corresponding X and Y data point. The default value is 1. All elements must be integers \geq 0.

Category is a list of numeric or string category codes for the corresponding *X* and *Y* data.

Include is a list of one or more of the category codes. Only those data items whose category code is included in this list are included in the calculation.

Output variable	Description
stat.RegEqn	Regression equation: $c/(1+a \cdot e^{-bx})+d)$
stat.a, stat.b, stat.c, stat.d	Regression coefficients
stat.Resid	Residuals from the regression
stat.XReg	List of data points in the modified X List actually used in the regression based on restrictions of Freq, Category List, and Include Categories
stat.YReg	List of data points in the modified Y List actually used in the regression based on restrictions of Freq, Category List, and Include Categories
stat.FreqReg	List of frequencies corresponding to stat.XReg and stat.YReg

Loop	Catalog > 📆 🕻	i
Loop Block EndLoop Repeatedly executes the statements in Block. Note that the loop will be executed endlessly, unless a Goto or Exit instruction is executed within Block. Block is a sequence of statements separated with the ":" character. Note for entering the example: In the Calculator application on the handheld, you can enter multi-line definitions by pressing instead of enter at the end of each line. On the computer keyboard, hold down Alt and press Enter.	Define $rollcount()$ =Func Local i $1 \rightarrow i$ Loop If $randInt(1,6)$ = $randInt(1,6)$ Goto end $i+1 \rightarrow i$ EndLoop Lbl end Return i EndFunc	_
	Don	e
	rollcount()	6
	rollcount()	3

LU		Catalog > [2]
LU Matrix, IMatrix, uMatrix, pMatrix[, Tol] Calculates the Doolittle LU (lower-upper) decomposition of a real or complex matrix. The lower triangular matrix is stored in IMatrix, the upper triangular matrix in uMatrix, and the permutation matrix (which describes the row swaps done during the calculation) in pMatrix. IMatrix • uMatrix = pMatrix • matrix Optionally, any matrix element is treated as zero if its absolute value is less than Tol. This tolerance is used only if the matrix has floating-point entries and does not contain any symbolic variables that have not been assigned a value. Otherwise, Tol is ignored.	$\begin{bmatrix} 6 & 12 & 18 \\ 5 & 14 & 31 \\ 3 & 8 & 18 \end{bmatrix} \rightarrow m1$ $LU \ m1, lower, upper, perm$ $lower$	$ \begin{bmatrix} 6 & 12 & 18 \\ 5 & 14 & 31 \\ 3 & 8 & 18 \end{bmatrix} $ Done $ \begin{bmatrix} 1 & 0 & 0 \\ \frac{5}{6} & 1 & 0 \\ \frac{1}{2} & \frac{1}{2} & 1 \end{bmatrix} $
If you usetrl _ enter] or set the Auto or Approximate mode to Approximate, computations are done using floating-point arithmetic. If Tol is omitted or not used, the default tolerance is calculated as: 5E-14 - max(dim(Matrix)) - rowNorm(Matrix) The LU factorization algorithm uses partial pivoting with row interchanges.	upper	$\begin{bmatrix} 6 & 12 & 18 \\ 0 & 4 & 16 \\ 0 & 0 & 1 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$

M

matlist()		Catalog > 🞉
mat▶list(Matrix) ⇒ list	mat ▶ list([1 2 3])	{1,2,3}
Returns a list filled with the elements in <i>Matrix</i> . The elements are copied from <i>Matrix</i> row by row.	$\begin{bmatrix} 1 & 2 & 3 \end{bmatrix} \rightarrow m1$	1 2 3
Note: You can insert this function from the computer keyboard by typing $\mathtt{mat@>list}()$.	$\frac{[4 \ 5 \ 6]}{\text{mat} \blacktriangleright \text{list}(m1)}$	$\frac{[4 \ 5 \ 6]}{\{1,2,3,4,5,6\}}$

max()		Catalog > 📆 🖁
$max(Value1, Value2) \Rightarrow expression$ $max(List1, List2) \Rightarrow list$	max(2.3,1.4)	2.3
max(Matrix1, Matrix2) ⇒ matrix	$\max(\{1,2\},\{-4,3\})$	$\{1,3\}$
Returns the maximum of the two arguments. If the arguments are two lists or matrices, returns a list or matrix containing the maximum value of each pair of corresponding elements.		
max(List) ⇒ expression	max({0,1,-7,1.3,0.5})	1.3
Returns the maximum element in list.	$\frac{\max(\{0,1,7,1.5,0.5\})}{}$	1.3
max(Matrix1) ⇒ matrix		[1 0 7]
Returns a row vector containing the maximum element of each column in ${\it Matrix} 1$.	$\max \begin{bmatrix} 1 & -3 & 7 \\ -4 & 0 & 0.3 \end{bmatrix}$	[1 0 7]
Empty (void) elements are ignored. For more information on empty elements, see page 132.		
Note: See also min().		

mean()

mean()	Catalog > [4][3]
$mean(List[, freqList]) \Rightarrow expression$	$ \frac{1}{\text{mean}(\{0.2,0,1,-0.3,0.4\})} \qquad 0.26 $
Returns the mean of the elements in List.	
Each $freqList$ element counts the number of consecutive occurrences of the corresponding element in $List$.	$\frac{\text{mean}(\{1,2,3\},\{3,2,1\})}{3}$
mean(Matrix1[, freqMatrix]) ⇒ matrix	In Rectangular vector format:
Returns a row vector of the means of all the columns in <i>Matrix1</i> .	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Each <i>freqMatrix</i> element counts the number of consecutive occurrences of the corresponding element in <i>Matrix1</i> .	$ \begin{bmatrix} -1 & 3 \\ 0.4 & -0.5 \end{bmatrix} $
Empty (void) elements are ignored. For more information on empty elements, see page 132.	
	$ \frac{1}{\text{mean}} \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} \begin{bmatrix} 5 & 3 \\ 4 & 1 \\ 6 & 2 \end{bmatrix} \qquad \qquad \left[\frac{47}{15} \frac{11}{3} \right] $

median()		Catalog > [2]
$median(List[, freqList]) \Rightarrow expression$	median({0.2,0,1,-0.3,0.4})	0.2
Returns the median of the elements in List.	median (0.2,0,1, 0.3,0.4) /	

Each $\mathit{freqList}$ element counts the number of consecutive occurrences of the corresponding element in List .

median()	Catalog > 🎉	
median(Matrix1[, freqMatrix]) ⇒ matrix	 [0.40.2]	

median(Mairix1[, freqMairix]) → mairix

Returns a row vector containing the medians of the columns in ${\it Matrix 1}$.

Each *freqMatrix* element counts the number of consecutive occurrences of the corresponding element in *Matrix1*.

Notes:

- All entries in the list or matrix must simplify to numbers.
- Empty (void) elements in the list or matrix are ignored. For more information on empty elements, see page 132.

MedMed Catalog > [j[2]

MedMed X,Y [, Freq] [, Category, Include]]

Computes the median-median line $y = (m \cdot x + b)$ on lists X and Y with frequency Freq. A summary of results is stored in the stat.results variable. (See page 98.)

All the lists must have equal dimension except for Include.

X and Y are lists of independent and dependent variables.

Freq is an optional list of frequency values. Each element in Freq specifies the frequency of occurrence for each corresponding X and Y data point. The default value is 1. All elements must be integers \geq 0.

Category is a list of numeric or string category codes for the corresponding X and Y data.

Include is a list of one or more of the category codes. Only those data items whose category code is included in this list are included in the calculation.

For information on the effect of empty elements in a list, see "Empty (Void) Elements" on page 132.

Output variable	Description
stat.RegEqn	Median-median line equation: m • x+b
stat.m, stat.b	Model coefficients
stat.Resid	Residuals from the median-median line
stat.XReg	List of data points in the modified X List actually used in the regression based on restrictions of Freq, Category List, and Include Categories
stat.YReg	List of data points in the modified Y List actually used in the regression based on restrictions of Freq, Category List, and Include Categories
stat.FreqReg	List of frequencies corresponding to stat.XReg and stat.YReg

mid()		Catalog >
mid(sourceString, Start[, Count]) ⇒ string	mid("Hello there",2)	"ello there"
Returns <i>Count</i> characters from character string <i>sourceString</i> , beginning with character number <i>Start</i> .	mid("Hello there",7,3)	"the"
If Count is omitted or is greater than the dimension of sourceString,	mid("Hello there",1,5)	"Hello"
returns all characters from <i>sourceString</i> , beginning with character number <i>Start</i> .	mid("Hello there",1,0)	"[]"

Count must be ≥ 0 . If Count = 0, returns an empty string.

mid()		Catalog > [2]
mid(sourceList, Start [, Count]) ⇒ list	mid({9,8,7,6},3)	{7,6}
Returns <i>Count</i> elements from <i>sourceList</i> , beginning with element number <i>Start</i> .	$mid({9,8,7,6},2,2)$	{8,7}
If Count is omitted or is greater than the dimension of sourceList,	mid({9,8,7,6},1,2)	{9,8}
returns all elements from <i>sourceList</i> , beginning with element number <i>Start</i> .	mid({9,8,7,6},1,0)	{[]}
$Count$ must be ≥ 0 . If Count = 0, returns an empty list.		
mid(sourceStringList, Start[, Count]) ⇒ list	mid({"A","B","C","D"}.2.2	2)

min()		Catalog > 📆
min(Value1, Value2) \Rightarrow expression min(List1, List2) \Rightarrow list min(Matrix1, Matrix2) \Rightarrow matrix	$\frac{\min(2.3,1.4)}{\min(\{1,2\},\{-4,3\})}$	$\frac{1.4}{\{-4,2\}}$
Returns the minimum of the two arguments. If the arguments are two lists or matrices, returns a list or matrix containing the minimum value of each pair of corresponding elements.		<u></u>
$min(List) \Rightarrow expression$	$min(\{0,1,-7,1.3,0.5\})$	
Returns the minimum element of <i>List</i> .	min(\(\frac{0}{1},\frac{1}{1},\frac{1}{1},\frac{3}{1},0.5\)}	
$min(Matrix1) \Rightarrow matrix$. [1 -2 7]	[-4 -2 0.2]
Returns a row vector containing the minimum element of each column in ${\it Matrix 1}$.	$ \min \begin{bmatrix} 1 & -3 & 7 \\ -4 & 0 & 0.3 \end{bmatrix} $	[-4 -3 0.3]
Note: See also max()		

Note: See also max().		
mirr()		Catalog > 🔯
mirr(financeRate,reinvestRate,CF0,CFList[,CFFreq])	list1:={6000,-8000,2000,-3000) }
Financial function that returns the modified internal rate of return of an investment.	of \(\langle \text{1SLT:=\{\0000,\8000,\2000,\-3000\}} \\ \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
financeRate is the interest rate that you pay on the cash flow amounts.	list2:={2,2,2,1}	{2,2,2,1}
reinvestRate is the interest rate at which the cash flows are reinvested.	mirr(4.65,12,5000,list1,list2)	13.41608607
CF0 is the initial cash flow at time 0; it must be a real number.		

1; if you enter values, they must be positive integers < 10,000. **Note:** See also **irr()**, page 49.

CFList is a list of cash flow amounts after the initial cash flow CF0. CFFreq is an optional list in which each element specifies the frequency of occurrence for a grouped (consecutive) cash flow amount, which is the corresponding element of CFList. The default is

Returns Count strings from the list of strings sourceStringList,

beginning with element number Start.

{"B","C"}

mod()		Catalog >
$mod(Value 1, Value 2) \Rightarrow expression$ $mod(List1, List2) \Rightarrow list$ $mod(Matrix1, Matrix2) \Rightarrow matrix$	$\frac{\operatorname{mod}(7,0)}{\operatorname{mod}(7,3)}$	7
Returns the first argument modulo the second argument as defined by the identities:	mod(-7,3)	2
mod(x,0) = x mod(x,y) = x - y floor(x/y)	$\frac{\text{mod}(7,-3)}{\text{mod}(-7,-3)}$	$\frac{-2}{-1}$
When the second argument is non-zero, the result is periodic in that argument. The result is either zero or has the same sign as the second argument.	mod({12,-14,16},{9,7,-5})	{3,0,-4}

If the arguments are two lists or two matrices, returns a list or matrix containing the modulo of each pair of corresponding elements.

Note: See also remain(), page 84

mRow()		Catalog > 📆
$\mathbf{mRow}(Value, Matrix 1, Index) \implies matrix$ Returns a copy of $Matrix 1$ with each element in row $Index$ of $Matrix 1$ multiplied by $Value$.	$\overline{mRow}\left(\frac{-1}{3}, \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, 2\right)$	$\begin{bmatrix} 1 & 2 \\ -1 & \frac{-4}{3} \end{bmatrix}$

mRowAdd()		Catalog > [a][2]
mRowAdd(Value, Matrix1, Index1, Index2) ⇒ matrix Returns a copy of Matrix1 with each element in row Index2 of Matrix1 replaced with:	mRowAdd $\begin{bmatrix} -3, \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, 1, 2 \end{bmatrix}$	$\begin{bmatrix} 1 & 2 \\ 0 & -2 \end{bmatrix}$

MultReg Catalog > [] []

MultReg Y, X1[,X2[,X3,...[,X10]]]

Value • row Index1 + row Index2

Calculates multiple linear regression of list *Y* on lists *X1*, *X2*, ..., *X10*. A summary of results is stored in the *stat.results* variable. (See page 98.)

All the lists must have equal dimension.

Output variable	Description
stat.RegEqn	Regression Equation: b0+b1•x1+b2•x2+
stat.b0, stat.b1,	Regression coefficients
stat.R ²	Coefficient of multiple determination
stat. ŷ List	ŷ List = b0+b1•x1+
stat.Resid	Residuals from the regression

MultRegintervals Y, X1[,X2[,X3,...[,X10]]],XValList[,CLevel]

Computes a predicted y-value, a level C prediction interval for a single observation, and a level C confidence interval for the mean response.

A summary of results is stored in the stat.results variable. (See page 98.)

All the lists must have equal dimension.

For information on the effect of empty elements in a list, see "Empty (Void) Elements" on page 132.

Output variable	Description
stat.RegEqn	Regression Equation: b0+b1 • x1+b2 • x2+
stat. ŷ	A point estimate: $\hat{\mathbf{y}} = b0 + b1 \cdot xl +$ for $XValList$
stat.dfError	Error degrees of freedom
stat.CLower, stat.CUpper	Confidence interval for a mean response
stat.ME	Confidence interval margin of error
stat.SE	Standard error of mean response
stat.LowerPred, stat.UpperrPred	Prediction interval for a single observation
stat.MEPred	Prediction interval margin of error
stat.SEPred	Standard error for prediction
stat.bList	List of regression coefficients, {b0,b1,b2,}
stat.Resid	Residuals from the regression

MultRegTests

Catalog > 🕎

MultRegTests *Y*, *X1*[,*X2*[,*X3*,...[,*X10*]]]

Multiple linear regression test computes a multiple linear regression on the given data and provides the global F test statistic and t test statistics for the coefficients.

A summary of results is stored in the stat.results variable. (See page 98.)

For information on the effect of empty elements in a list, see "Empty (Void) Elements" on page 132.

Outputs

Output variable	Description
stat.RegEqn	Regression Equation: b0+b1 • x1+b2 • x2+
stat.F	Global F test statistic
stat.PVal	P-value associated with global F statistic
stat.R ²	Coefficient of multiple determination

Output variable	Description
stat.AdjR ²	Adjusted coefficient of multiple determination
stat.s	Standard deviation of the error
stat.DW	Durbin-Watson statistic; used to determine whether first-order auto correlation is present in the model
stat.dfReg	Regression degrees of freedom
stat.SSReg	Regression sum of squares
stat.MSReg	Regression mean square
stat.dfError	Error degrees of freedom
stat.SSError	Error sum of squares
stat.MSError	Error mean square
stat.bList	[b0,b1,] List of coefficients
stat.tList	List of t statistics, one for each coefficient in the bList
stat.PList	List P-values for each t statistic
stat.SEList	List of standard errors for coefficients in bList
stat. ŷ List	$\hat{\mathbf{y}}$ List = b0+b1 • x1+
stat.Resid	Residuals from the regression
stat.sResid	Standardized residuals; obtained by dividing a residual by its standard deviation
stat.CookDist	Cook's distance; measure of the influence of an observation based on the residual and leverage
stat.Leverage	Measure of how far the values of the independent variable are from their mean values

nand		ctrl = keys
BooleanExpr1 nand BooleanExpr2 returns Boolean expression BooleanList1 nand BooleanList2 returns Boolean list BooleanMatrix1 nand BooleanMatrix2 returns Boolean matrix	x≥3 and x≥4	<i>x</i> ≥4
Booleanimania Halia Booleanimania Teturis Boolean mairia	x≥3 nand x ≥4	x<4
Returns the negation of a logical and operation on the two arguments. Returns true, false, or a simplified form of the equation.		
For lists and matrices, returns comparisons element by element.		
Integer1 nand Integer2 ⇒ integer Compares two real integers bit-by-bit using a nand operation.	3 and 4	0
Internally, both integers are converted to signed, 64-bit binary numbers. When corresponding bits are compared, the result is 1 if both bits are 1; otherwise, the result is 0. The returned value erpresents the bit results, and is displayed according to the Base	3 nand 4	-1
	$\{1,2,3\}$ and $\{3,2,1\}$	{1,2,1}
mode.	{1,2,3} nand {3,2,1}	{-2,-3,-2}

You can enter the integers in any number base. For a binary or hexadecimal entry, you must use the 0b or 0h prefix, respectively. Without a prefix, integers are treated as decimal (base 10).

nCr()		Catalog > 📳
nCr(Value1, Value2) ⇒ expression	nCr(z,3) z=5	10
For integer $Value1$ and $Value2$ with $Value1 \ge Value2 \ge 0$, $\mathbf{nCr}()$ is the number of combinations of $Value1$ things taken $Value2$ at a time. (This is also known as a binomial coefficient.)	$\operatorname{nCr}(z,3) z=6$	20
nCr($Value$, 0) \Rightarrow 1		
$nCr(Value, negInteger) \Rightarrow 0$		
nCr(Value, posInteger) ⇒ Value • (Value−1)		
(Value-posInteger+1)/ posInteger!		

nCr(Value, nonInteger) ⇒ expression!/
((Value-nonInteger)! • nonInteger!)

 $nCr(List1, List2) \Rightarrow list$

nDerivative()

zero

Returns a list of combinations based on the corresponding element pairs in the two lists. The arguments must be the same size list.

nCr(Matrix1, Matrix2) ⇒ matrix

Returns a matrix of combinations based on the corresponding element pairs in the two matrices. The arguments must be the same size matrix.

$\operatorname{nCr}(\{5,4,3\},$	{2,4,2})	{10,1,3}

nCr∏6	5],[2	2	15	10
$\[\] 4$	3][2	2	6	3]

		Catalog > 🌉ু
$nDerivative(Expr1,Var=Value[,Order]) \Rightarrow value$ $nDerivative(Expr1,Var[,Order]) Var=Value \Rightarrow value$	$_{ie}$ nDerivative($ x ,x=1$)	1
Returns the numerical derivative calculated using auto differ methods.	rentiation nDerivative $(x ,x) x=0$	undef
When Value is specified it overrides any prior variable assign	$n_{\text{prent or}} n_{\text{Derivative}} (\sqrt{x-1}, x) x=1$	undef

When Value is specified, it overrides any prior variable assignment any current "|" substitution for the variable.

If the variable Var does not contain a numeric value, you must provide Value.

Order of the derivative must be 1 or 2.

Note: The **nDerivative()** algorithm has a limitiation: it works recursively through the unsimplified expression, computing the numeric value of the first derivative (and second, if applicable) and the evaluation of each subexpression, which may lead to an unexpected result.

Consider the example on the right. The first derivative of $x(x^2+x)^2(1/3)$ at x=0 is equal to 0. However, because the first derivative of the subexpression $(x^2+x)^2(1/3)$ is undefined at x=0, and this value is used to calculate the derivative of the total expression, **nDerivative()** reports the result as undefined and displays a warning message.

If you encounter this limitation, verify the solution graphically. You can also try using ${\bf central Diff}()$.

/ 1 \	undef
(2)3	
nDerivative $x \cdot (x^2 + x)^3$, x , $1/x = 0$	
$\frac{1}{\text{centralDiff}(x \cdot (x^2 + x)^3, x) x=0}$	

 newList()
 Catalog > [3]

 newList(numElements) \Rightarrow list
 newList(4)
 $\{0,0,0,0\}$

 Returns a list with a dimension of numElements. Each element is
 $\{0,0,0,0\}$

0.000033

newMat()		Catalog > 🚉
newMat(numRows, numColumns) ⇒ matrix	newMat(2,3)	[0 0 0]
Returns a matrix of zeros with the dimension <i>numRows</i> by <i>numColumns</i> .	(-,-,-,	$\begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$

nfMax()		Catalog > 🚉
$ \mathbf{nfMax}(Expr, Var) \Rightarrow value \\ \mathbf{nfMax}(Expr, Var, lowBound) \Rightarrow value $	$\frac{1}{\operatorname{nfMax}(-x^2-2\cdot x-1,x)}$	-1.
nfMax(Expr, Var, lowBound, upBound) ⇒ value nfMax(Expr, Var) lowBound≤Var≤upBound ⇒ value	$n_{\text{fMax}}(0.5 \cdot x^3 - x - 2, x, -5, 5)$	-0.816497
Returns a candidate numerical value of variable Var where the local		

maximum of Expr occurs.

If you supply lowBound and upBound, the function looks in the closed interval [lowBound, upBound] for the local maximum.

nfMin()		Catalog > 📆 🕽
nfMin($Expr$, Var) \Rightarrow $value$ nfMin($Expr$, Var , $lowBound$) \Rightarrow $value$	$\frac{1}{\operatorname{nfMin}(x^2+2\cdot x+5,x)}$	-1.
nfMin($Expr$, Var , $lowBound$, $upBound$) \Rightarrow $value$ nfMin($Expr$, Var) $ lowBound \le Var \le upBound \Rightarrow value$	$n_{\text{fMin}}(0.5 \cdot x^3 - x - 2, x, -5, 5)$	0.816497
Returns a candidate numerical value of variable $\it Var$ where the local		

If you supply *lowBound* and *upBound*, the function looks in the closed interval [*lowBound*, *upBound*] for the local minimum.

minimum of Expr occurs.

nint()	Catalog > 🕡
nint ($ExprI$, Var , $Lower$, $Upper$) $\Rightarrow expression$ If the integrand $ExprI$ contains no variable other than Var , and if $Lower$ and $Upper$ are constants, positive ∞ , or negative ∞ , then nint () returns an approximation of $\{(ExprI, Var, Lower, Upper)\}$. This approximation is a weighted average of some sample values of the integrand in the interval $Lower \le Var \le Upper$.	$\frac{\text{nInt}(e^{-x^2}, x, -1, 1)}{1.49365}$
The goal is six significant digits. The adaptive algorithm terminates when it seems likely that the goal has been achieved, or when it seems unlikely that additional samples will yield a worthwhile improvement.	$\frac{1}{\text{nInt}(\cos(x), x, -\pi, \pi+1. E-12)} -1.04144 E-12$
A warning is displayed ("Questionable accuracy") when it seems that the goal has not been achieved.	
Nest nint() to do multiple numeric integration. Integration limits can depend on integration variables outside them.	$ \frac{1}{\operatorname{nInt}\left(\operatorname{nInt}\left(\frac{e^{-x\cdot y}}{\sqrt{x^2-y^2}}, y, -x, x\right), x, 0, 1\right)} \qquad 3.30423 $

nom()		Catalog > 🗓 🖁
nom(effectiveRate,CpY) ⇒ value	nom(5.90398,12)	5.75
Financial function that converts the annual effective interest rate	110111(3.90396,12)	9.13

effectiveRate to a nominal rate, given CpY as the number of compounding periods per year.

 $\it effectiveRate$ must be a real number, and $\it CpY$ must be a real number > 0.

Note: See also eff(), page 32.

nor		ctrl = keys
BooleanExpr1 nor BooleanExpr2 returns Boolean expression BooleanList1 nor BooleanList2 returns Boolean list	x≥3 or x≥4	<i>x</i> ≥3
BooleanMatrix1 nor BooleanMatrix2 returns Boolean matrix	x≥3 nor x≥4	x<3
Returns the negation of a logical or operation on the two arguments. Returns true, false, or a simplified form of the equation.		
For lists and matrices, returns comparisons element by element.		
Integer1 nor Integer2 ⇒ integer	3 or 4	7
Compares two real integers bit-by-bit using a nor operation.	3 01 4	/
Internally, both integers are converted to signed, 64-bit binary numbers. When corresponding bits are compared, the result is 1 if both bits are 1; otherwise, the result is 0. The returned value represents the bit results, and is displayed according to the Base	3 nor 4	-8
	{1,2,3} or {3,2,1}	{3,2,3}
mode.	$\{1,2,3\}$ nor $\{3,2,1\}$	{-4,-3,-4}
You can enter the integers in any number base. For a binary or		

norm()		Catalog > 📆
norm(Matrix) ⇒ expression norm(Vector) ⇒ expression Returns the Frobenius norm.	$ \operatorname{norm} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} $	5.47723
Returns the Hoberius Horin.	norm([1 2])	2.23607
	$ \overline{\operatorname{norm} \begin{bmatrix} 1 \\ 2 \end{bmatrix}} $	2.23607

normCdf()	Catalog > ৄিটু

 $normCdf(lowBound, upBound[, \mu[,\sigma]]) \Rightarrow number \ if \ lowBound$ and upBound are numbers, list if lowBound and upBound are lists

hexadecimal entry, you must use the 0b or 0h prefix, respectively. Without a prefix, integers are treated as decimal (base 10).

Computes the normal distribution probability between lowBound and upBound for the specified μ (default=0) and σ (default=1).

For $P(X \le upBound)$, set lowBound = -9E999.

normPdf() Catalog > [a] 2

normPdf(XVal[, μ [, σ]]) \Rightarrow number if XVal is a number, list if XVal is a list

Computes the probability density function for the normal distribution at a specified XVal value for the specified μ and σ .

not Catalog > [1]3

not BooleanExpr ⇒ Boolean expression

Returns true, false, or a simplified form of the argument.

not Integer1 ⇒ integer

Returns the one's complement of a real integer. Internally, *Integer1* is converted to a signed, 64-bit binary number. The value of each bit is flipped (0 becomes 1, and vice versa) for the one's complement. Results are displayed according to the Base mode.

You can enter the integer in any number base. For a binary or hexadecimal entry, you must use the 0b or 0h prefix, respectively. Without a prefix, the integer is treated as decimal (base 10).

If you enter a decimal integer that is too large for a signed, 64-bit binary form, a symmetric modulo operation is used to bring the value into the appropriate range. For more information, see **>Base2**, page 12.

not (2≥3)	true
not 0hB0▶Base16	0hFFFFFFFFFFFF4F
not not 2	2

In Hex base mode:

─Important: Zero, not the letter O.

not 0h7AC36	0hFFFFFFFFFF853C9

In Bin base mode:

0b100101▶Base10	37

not 0b100101

To see the entire result, press \triangle and then use \blacktriangleleft and \blacktriangleright to move the cursor.

Note: A binary entry can have up to 64 digits (not counting the 0b prefix). A hexadecimal entry can have up to 16 digits.

nPr()		Catalog > 🗐 🖟
nPr(Value1, Value2) ⇒ expression	$\frac{1}{n\Pr(z,3) z=5}$	60
For integer $Value1$ and $Value2$ with $Value1 \ge Value2 \ge 0$, $nPr()$ is the number of permutations of $Value1$ things taken $Value2$ at a time.	$\frac{1}{n\Pr(z,3) z=6}$	120
nPr(<i>Value</i> , 0) ⇒ 1	$nPr({5,4,3},{2,4,2})$	{20,24,6}
nPr(Value, negInteger) ⇒ 1/((Value+1) · (Value+2) (Value-negInteger)) nPr(Value, posInteger) ⇒ Value · (Value-1) (Value-posInteger+1)	$n\Pr\begin{bmatrix} 6 & 5 \\ 4 & 3 \end{bmatrix}, \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}$	$\begin{bmatrix} 30 & 20 \\ 12 & 6 \end{bmatrix}$
nPr(Value, nonInteger) ⇒ Value! I (Value−nonInteger)!		
nPr(List1, List2) ⇒ list Returns a list of permutations based on the corresponding element pairs in the two lists. The arguments must be the same size list.	$nPr({5,4,3},{2,4,2})$	{20,24,6}
nPr(Matrix1, Matrix2) ⇒ matrix Returns a matrix of permutations based on the corresponding element pairs in the two matrices. The arguments must be the same	$n\Pr\begin{bmatrix} 6 & 5 \\ 4 & 3 \end{bmatrix}, \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}$	$\begin{bmatrix} 30 & 20 \\ 12 & 6 \end{bmatrix}$

size matrix.

npv(InterestRate,CFO,CFList[,CFFreq])

Financial function that calculates net present value; the sum of the present values for the cash inflows and outflows. A positive result for npy indicates a profitable investment.

InterestRate is the rate by which to discount the cash flows (the cost of money) over one period.

CF0 is the initial cash flow at time 0: it must be a real number.

CFList is a list of cash flow amounts after the initial cash flow CFO.

CFFreq is a list in which each element specifies the frequency of occurrence for a grouped (consecutive) cash flow amount, which is the corresponding element of CFList. The default is 1; if you enter values, they must be positive integers < 10,000.

<i>list1</i> :={6000,-8000,2000,-3000}		
{6000,-8000,2000,-3000		
list2:={2,2,2,1}	{2,2,2,1}	
npv(10,5000,list1,list2)	4769.91	

nSolve(Equation, Var[=Guess]) ⇒ number or error_string **nSolve(**Equation, Var[=Guess], lowBound)

⇒ number or error_string

nSolve (Equation, Var [= Guess], low Bound, up Bound)

⇒ number or error_string

nSolve(Equation,Var[=Guess]) | lowBound≤Var≤upBound ⇒ number or error string

Iteratively searches for one approximate real numeric solution to *Equation* for its one variable. Specify the variable as:

variable

- or -

variable = real number

For example, x is valid and so is x=3.

nSolve() attempts to determine either one point where the residual is zero or two relatively close points where the residual has opposite signs and the magnitude of the residual is not excessive. If it cannot achieve this using a modest number of sample points, it returns the string "no solution found."

$$\frac{\text{nSolve}(x^2+5\cdot x-25=9,x)}{\text{nSolve}(x^2=4,x=-1)} \qquad 3.84429$$

$$\frac{-2.}{\text{nSolve}(x^2=4,x=-1)} \qquad 2.$$

Note: If there are multiple solutions, you can use a guess to help find a particular solution.

$$\frac{\text{nSolve}(x^2+5\cdot x-25=9,x)|_{x<0}}{\text{nSolve}\left(\frac{(1+r)^{24}-1}{r}=26,r\right)|_{r>0}} = 0.006886$$

$$nSolve(x^2=-1,x)$$
 "No solution found"

OneVar Catalog > [a] 2

OneVar [1,]X[,[Freq][,Category,Include]]
OneVar [n,]X1,X2[X3[,...[,X20]]]

Calculates 1-variable statistics on up to 20 lists. A summary of results is stored in the *stat.results* variable. (See page 98.)

All the lists must have equal dimension except for Include.

Freq is an optional list of frequency values. Each element in Freq specifies the frequency of occurrence for each corresponding X and Y data point. The default value is 1. All elements must be integers \geq 0.

Category is a list of numeric category codes for the corresponding X values.

Include is a list of one or more of the category codes. Only those data items whose category code is included in this list are included in the calculation.

An empty (void) element in any of the lists *X*, *Freq*, or *Category* results in a void for the corresponding element of all those lists. An empty element in any of the lists *XI* through *X20* results in a void for the corresponding element of all those lists. For more information on empty elements, see page 132.

Output variable	Description
stat.X	Mean of x values
stat.Σx	Sum of x values
stat.Σx ²	Sum of x ² values
stat.sx	Sample standard deviation of x
stat.σx	Population standard deviation of x
stat.n	Number of data points
stat.MinX	Minimum of x values
stat.Q ₁ X	1st Quartile of x
stat.MedianX	Median of x
stat.Q ₃ X	3rd Quartile of x
stat.MaxX	Maximum of x values
stat.SSX	Sum of squares of deviations from the mean of x

or Catalog > [2]

BooleanExpr1 or BooleanExpr2 returns Boolean expression
BooleanList1 or BooleanList2 returns Boolean list
BooleanMatrix1 or BooleanMatrix2 returns Boolean matrix

Returns true or false or a simplified form of the original entry.

Returns true if either or both expressions simplify to true. Returns false only if both expressions evaluate to false.

Note: See xor.

Note for entering the example: In the Calculator application on the handheld, you can enter multi-line definitions by pressing 🚭

instead of enter at the end of each line. On the computer keyboard, hold down **Alt** and press **Enter**.

Integer1 or Integer2 ⇒ integer

Compares two real integers bit-by-bit using an or operation. Internally, both integers are converted to signed, 64-bit binary numbers. When corresponding bits are compared, the result is 1 if either bit is 1; the result is 0 only if both bits are 0. The returned value represents the bit results, and is displayed according to the Base mode.

You can enter the integers in any number base. For a binary or hexadecimal entry, you must use the 0b or 0h prefix, respectively. Without a prefix, integers are treated as decimal (base 10).

If you enter a decimal integer that is too large for a signed, 64-bit binary form, a symmetric modulo operation is used to bring the value into the appropriate range. For more information, see **>Base2**, page 12.

Note: See xor.

Define g	(x)=Func	Done
	If $x \le 0$ or $x \ge 5$	
	Goto end	
	Return $x \cdot 3$	
	Lbl end	
	EndFunc	
g(3)		9
g(0)	A function did not re	turn a value

In Hex base mode:

0h7AC36 or 0h3D5F 0h7BD7F

Important: Zero, not the letter O.

In Bin base mode:

0b100101 or 0b100 0b100101

Note: A binary entry can have up to 64 digits (not counting the 0b prefix). A hexadecimal entry can have up to 16 digits.

ord()		Catalog > 🔃
ord(String) ⇒ integer ord(List1) ⇒ list	ord("hello")	104
Returns the numeric code of the first character in character string	char(104)	"h"
String, or a list of the first characters of each list element.	ord(char(24))	24
	ord({ "alpha", "beta" })	{97,98}

P

PFRx()	Catalog > [2]
P Rx($rExpr$, $\theta Expr$) \Rightarrow expression	In Radian angle mode:
PPRx(rList, θ List) \Rightarrow list PPRx(rMatrix, θ Matrix) \Rightarrow matrix	P▶Rx(4,60°) 2.
Returns the equivalent x-coordinate of the (r, $\boldsymbol{\theta}$) pair.	$P \triangleright Rx \left\{ \{-3,10,1.3\}, \left\{ \frac{\pi}{3}, \frac{-\pi}{4}, 0 \right\} \right\}$
Note: The θ argument is interpreted as either a degree, gradian or radian angle, according to the current angle mode. If the argument is	{-1.5,7.07107,1.3}
an expression, you can use $^{\circ}, ^{\rm G}$ or $^{\rm f}$ to override the angle mode setting temporarily.	
Note: You can insert this function from the computer keyboard by typing $P@>Rx()$.	

P≯Ry()

Catalog > [1]

 $P \triangleright R y (rValue, \theta Value) \Rightarrow value$

 $PPRy(rList, \theta List) \Rightarrow list$

 $PPRy(rMatrix, \theta Matrix) \Rightarrow matrix$

Returns the equivalent v-coordinate of the (r, θ) pair.

Note: The θ argument is interpreted as either a degree, radian or gradian angle, according to the current angle mode. or

Note: You can insert this function from the computer keyboard by typing P@>Ry(...).

In Radian angle mode:

3.4641

P►Ry
$$\left\{ \left\{ -3,10,1.3 \right\}, \left\{ \frac{\pi}{3}, \frac{-\pi}{4}, 0 \right\} \right\}$$

 $\left\{ -2.59808, -7.07107, 0 \right\}$

PassErr

PassFrr

Passes an error to the next level.

If system variable errCode is zero. PassErr does not do anything.

The Else clause of the Try...Else...EndTry block should use CirErr or PassErr. If the error is to be processed or ignored, use CIrErr. If what to do with the error is not known, use PassErr to send it to the next error handler. If there are no more pending Try...Else...EndTry error handlers, the error dialog box will be displayed as normal.

Note: See also CirErr, page 17, and Try, page 106.

Note for entering the example: In the Calculator application on the handheld, you can enter multi-line definitions by pressing +

instead of enter at the end of each line. On the computer keyboard. hold down Alt and press Enter.

For an example of PassErr, See Example 2 under the Try command, page 106.

piecewise()

Catalog > 2

piecewise(Expr1 [, Cond1 [, Expr2 [, Cond2 [, ...]]]])

Returns definitions for a piecewise function in the form of a list. You can also create piecewise definitions by using a template.

Note: See also Piecewise template, page 2.

$\sum_{\text{Define } n(x) = \int x, x > 0}$	Done
Define $p(x) = \begin{cases} x, & x > 0 \\ \text{undef}, x \le 0 \end{cases}$	
p(1)	1
p(-1)	undef

poissCdf()

 $poissCdf(\lambda_{l}lowBound, upBound) \Rightarrow number if lowBound and$ upBound are numbers, list if lowBound and upBound are lists $poissCdf(\lambda, upBound)$ for $P(0 \le X \le upBound) \implies number$ if upBound is a number, list if upBound is a list

Computes a cumulative probability for the discrete Poisson distribution with specified mean λ .

For $P(X \le upBound)$, set lowBound=0

poissPdf()

poissPdf(λ , XVal) \Rightarrow number if XVal is a number, list if XVal is

Computes a probability for the discrete Poisson distribution with the specified mean λ .

Polar Catalog > [3]

1

Vector ▶Polar

Note: You can insert this operator from the computer keyboard by typing @>Polar.

Displays vector in polar form $[r \angle \theta]$. The vector must be of dimension 2 and can be a row or a column.

Note: >Polar is a display-format instruction, not a conversion function. You can use it only at the end of an entry line, and it does not update *ans*.

Note: See also ▶Rect, page 82.

complexValue ▶Polar

Displays complex Vector in polar form.

- Degree angle mode returns (r∠θ).
- Radian angle mode returns re^{iθ}.

complexValue can have any complex form. However, an $re^{i\theta}$ entry causes an error in Degree angle mode.

Note: You must use the parentheses for an $(r \angle \theta)$ polar entry.

In Padian angle mode

3. Polar

(3+4·i)▶Polar	e ^{.927295⋅i} ⋅5	
$(4 \angle \frac{\pi}{3})$ Polar	e ^{1.0472⋅i} ⋅4.	

3.16228 / 71.5651

In Gradian angle mode:

-	
(4·i)▶Polar	(4 ∠ 100)

In Degree angle mode:

$$(3+4\cdot i)$$
 Polar $(5 \angle 53.1301)$

polyEval()

polyEval(List1, Expr1) \Rightarrow expression **polyEval(List1, List2)** \Rightarrow expression

Interprets the first argument as the coefficient of a descending-degree polynomial, and returns the polynomial evaluated for the value of the second argument.

$polyEval(\{1,2,3,4\},2)$	26
polyEval({1,2,3,4},{2,-7})	{26,-262}

Catalog > 23

polyRoots()

polyRoots(Poly,Var) $\Rightarrow list$ polyRoots(ListOfCoeffs) $\Rightarrow list$

The first syntax, **polyRoots**(*Poly,Var*), returns a list of real roots of polynomial *Poly* with respect to variable *Var*. If no real roots exist, returns an empty list: {}.

Poly must be a polynomial in expanded form in one variable. Do not use unexpanded forms such as $y^2 \cdot y + 1$ or $x \cdot x + 2 \cdot x + 1$

The second syntax, **polyRoots**(*ListOfCoeffs*), returns a list of real roots for the coefficients in *ListOfCoeffs*.

Note: See also cPolyRoots(), page 23.

$$\frac{\text{Catalog} > \text{O}}{\text{polyRoots}(y^3 + 1, y)} \qquad \{-1\}$$

$$\frac{\text{cPolyRoots}(y^3 + 1, y)}{\{-1, 0.5 - 0.866025 \cdot i, 0.5 + 0.866025 \cdot i\}}$$

$$\frac{\text{polyRoots}(x^2 + 2 \cdot x + 1, x)}{\text{polyRoots}(\{1, 2, 1\})} \qquad \{-1, -1\}$$

PowerReg X,Y [, Freq] [, Category, Include]]

Computes the power regression $y = (a \cdot (x)^b)$ on lists X and Y with frequency *Freq*. A summary of results is stored in the *stat.results* variable. (See page 98.)

All the lists must have equal dimension except for Include.

X and Y are lists of independent and dependent variables.

Freq is an optional list of frequency values. Each element in Freq specifies the frequency of occurrence for each corresponding X and Ydata point. The default value is 1. All elements must be integers ≥ 0 .

Category is a list of numeric or string category codes for the corresponding X and Y data.

Include is a list of one or more of the category codes. Only those data items whose category code is included in this list are included in the

For information on the effect of empty elements in a list, see "Empty (Void) Elements" on page 132.

Output variable	Description
stat.RegEqn	Regression equation: a • (x) ^b
stat.a, stat.b	Regression coefficients
stat.r ²	Coefficient of linear determination for transformed data
stat.r	Correlation coefficient for transformed data (ln(x), ln(y))
stat.Resid	Residuals associated with the power model
stat.ResidTrans	Residuals associated with linear fit of transformed data
stat.XReg	List of data points in the modified X List actually used in the regression based on restrictions of Freq, Category List, and Include Categories
stat.YReg	List of data points in the modified Y List actually used in the regression based on restrictions of Freq, Category List, and Include Categories
stat.FreqReg	List of frequencies corresponding to stat.XReg and stat.YReg

Prgm Catalog > [a] [3]

Prgm

Block EndPrgm

product()

Template for creating a user-defined program. Must be used with the **Define LibPub**, or **Define LibPriv** command.

Block can be a single statement, a series of statements separated with the ":" character, or a series of statements on separate lines.

Note for entering the example: In the Calculator application on the handheld, you can enter multi-line definitions by pressing

instead of enter at the end of each line. On the computer keyboard, hold down **Alt** and press **Enter**.

Calculate GCD and display intermediate results.

Define proggcd(a,b)= Prgm Local d While $b \neq 0$ d:=mod(a,b) a:=b

b:=d
Disp a," ",b

EndWhile
Disp "GCD=",a
EndPrgm

Done

See Π (), page 125.

proggcd(4560,450)

450 60
60 30
30 0
GCD=30

Done

prodSeq()

Product (PI) See Π (), page 125.

product()		Catalog >
product (<i>List</i> [, <i>Start</i> [, <i>End</i>]]) ⇒ <i>expression</i> Returns the product of the elements contained in <i>List. Start</i> and <i>End</i> are optional. They specify a range of elements.	$\frac{\text{product}(\{1,2,3,4\})}{\text{product}(\{4,5,8,9\},2,3)}$	24
product(Matrix1[, Start[, End]]) \Rightarrow matrix		[28 80 162]
Returns a row vector containing the products of the elements in the columns of <i>Matrix1</i> . <i>Start</i> and <i>end</i> are optional. They specify a range of rows.	product \(\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} \)	[4 10 10]
Empty (void) elements are ignored. For more information on empty elements, see page 132.	$ \frac{123}{\text{product} \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}, 1, 2} $	[4 10 18]

propFrac()

Catalog >

 $propFrac(Value1[, Var]) \Rightarrow value$

propFrac(rational_number) returns rational_number as the sum
of an integer and a fraction having the same sign and a greater
denominator magnitude than numerator magnitude.

$\operatorname{propFrac}\left(\frac{4}{3}\right)$	$1+\frac{1}{3}$
$propFrac\left(\frac{-4}{3}\right)$	$-1-\frac{1}{3}$

propFrac($rational_expression$, Var) returns the sum of proper ratios and a polynomial with respect to Var. The degree of Var in the denominator exceeds the degree of Var in the numerator in each proper ratio. Similar powers of Var are collected. The terms and their factors are sorted with Var as the main variable.

If Var is omitted, a proper fraction expansion is done with respect to the most main variable. The coefficients of the polynomial part are then made proper with respect to their most main variable first and so on

You can use the **propFrac()** function to represent mixed fractions and demonstrate addition and subtraction of mixed fractions.

$\operatorname{propFrac}\left(\frac{11}{7}\right)$	$1 + \frac{4}{7}$
$\frac{1}{\text{propFrac}\left(3+\frac{1}{11}+5+\frac{3}{4}\right)}$	$8 + \frac{37}{44}$
$\frac{1}{\text{propFrac}}\left(3+\frac{1}{11}-\left(5+\frac{3}{4}\right)\right)$	$-2-\frac{29}{44}$

Q

QR

Catalog > 📆

1 2 3

4 5 6

QR Matrix, qMatrix, rMatrix[, Tol]

Calculates the Householder QR factorization of a real or complex matrix. The resulting Q and R matrices are stored to the specified *Matrix*. The Q matrix is unitary. The R matrix is upper triangular.

Optionally, any matrix element is treated as zero if its absolute value is less than *Tol*. This tolerance is used only if the matrix has floating-point entries and does not contain any symbolic variables that have not been assigned a value. Otherwise, *Tol* is ignored.

- If you use ctrl enter or set the Auto or Approximate mode to Approximate, computations are done using floatingpoint arithmetic.
- If Tol is omitted or not used, the default tolerance is calculated as:

5E-14 • max(dim(Matrix)) • rowNorm(Matrix)

The floating-point number (9.) in m1 causes results to be calculated in floating-point form.

5 6

[7 8 9.]				[7	8	9.]
QR $m1,q$	m,rn	n				D	one
qm	0.1	23091	0.	.904534	0.40	082	48
	0.4	92366	0.	.301511	-0.8	164	197
	0.8	36164	-0	.301511	0.40	082	48
rm		8.124	04	9.60114	4 11	.07	82
		0.		0.90453	4 1.	809	907
		0.		0.		0.	
ClearAZ						D	one

The QR factorization is computed numerically using Householder transformations. The symbolic solution is computed using Gram-Schmidt. The columns in *qMatName* are the orthonormal basis vectors that span the space defined by *matrix*.

QuadReg

QuadReg X,Y [, Freq] [, Category, Include]]

Computes the quadratic polynomial regression $y = a \cdot x^2 + b \cdot x + c$ on lists X and Y with frequency Freq. A summary of results is stored in the stat.results variable. (See page 98.)

All the lists must have equal dimension except for Include.

X and Y are lists of independent and dependent variables.

Freq is an optional list of frequency values. Each element in Freq specifies the frequency of occurrence for each corresponding X and Y data point. The default value is 1. All elements must be integers ≥ 0 .

Category is a list of numeric or string category codes for the corresponding X and Y data.

Include is a list of one or more of the category codes. Only those data items whose category code is included in this list are included in the calculation

For information on the effect of empty elements in a list, see "Empty (Void) Elements" on page 132.

Output variable	Description
stat.RegEqn	Regression equation: a • x²+b • x+c
stat.a, stat.b, stat.c	Regression coefficients
stat.R ²	Coefficient of determination
stat.Resid	Residuals from the regression
stat.XReg	List of data points in the modified X List actually used in the regression based on restrictions of Freq, Category List, and Include Categories
stat.YReg	List of data points in the modified Y List actually used in the regression based on restrictions of Freq, Category List, and Include Categories
stat.FreqReg	List of frequencies corresponding to stat.XReg and stat.YReg

Catalog > 🎉

QuartReg X,Y [, Freq] [, Category, Include]]

QuartReg

Computes the quartic polynomial regression $y = a \cdot x^4 + b \cdot x^3 + c \cdot x^2 + d \cdot x + e$ on lists X and Y with frequency Freq. A summary of results is stored in the stat.results variable. (See page 98.)

All the lists must have equal dimension except for Include.

X and Y are lists of independent and dependent variables.

Freq is an optional list of frequency values. Each element in Freq specifies the frequency of occurrence for each corresponding X and Y data point. The default value is 1. All elements must be integers \geq 0.

Category is a list of numeric or string category codes for the corresponding X and Y data.

Include is a list of one or more of the category codes. Only those data items whose category code is included in this list are included in the calculation.

For information on the effect of empty elements in a list, see "Empty (Void) Elements" on page 132.

Output variable	Description
stat.RegEqn	Regression equation: $a \cdot x^4 + b \cdot x^3 + c \cdot x^2 + d \cdot x + e$
stat.a, stat.b, stat.c, stat.d, stat.e	Regression coefficients
stat.R ²	Coefficient of determination
stat.Resid	Residuals from the regression
stat.XReg	List of data points in the modified X List actually used in the regression based on restrictions of Freq, Category List, and Include Categories
stat.YReg	List of data points in the modified Y List actually used in the regression based on restrictions of Freq, Category List, and Include Categories
stat.FreqReg	List of frequencies corresponding to stat.XReg and stat.YReg

R ▶ P θ()	Catalog > 📆 🖫
RPP θ (xValue, yValue) \Rightarrow value RPP θ (xList, yList) \Rightarrow list	In Degree angle mode: $R \triangleright P\theta(2,2) $ 45.
RPPO (xMatrix, yMatrix) \Rightarrow matrix Returns the equivalent θ -coordinate of the (x,y) pair arguments.	In Gradian angle mode:
Note: The result is returned as a degree, gradian or radian angle, according to the current angle mode setting.	$R \blacktriangleright P\theta(2,2) $ 50.
Note: You can insert this function from the computer keyboard by typing $R@>Ptheta()$.	$\frac{\text{In Radian angle mode:}}{\text{R} \blacktriangleright \text{P} \theta(3,2)} \qquad \qquad 0.588003$
	$R \triangleright P\theta \begin{bmatrix} 3 & -4 & 2 \end{bmatrix}, \begin{bmatrix} 0 & \frac{\pi}{4} & 1.5 \end{bmatrix}$
	[0. 2.94771 0.643501]

ryri()	Catalog > 🎉 🛂
R▶Pr (xValue, yValue) ⇒ value	In Radian angle mode:
RPPr (xList, yList) \Rightarrow list RPPr (xMatrix, yMatrix) \Rightarrow matrix	R▶Pr(3,2) 3.60555
Returns the equivalent r-coordinate of the (x,y) pair arguments.	$R \triangleright \Pr \left[\begin{bmatrix} 3 & -4 & 2 \end{bmatrix}, \begin{bmatrix} 0 & \frac{\pi}{4} & 1.5 \end{bmatrix} \right]$
Note: You can insert this function from the computer keyboard by typing R@>Pr().	$\begin{bmatrix} 3 & 4.07638 & \frac{5}{2} \end{bmatrix}$

▶Rad		Catalog > 🕎
Value1▶Rad ⇒ value	In Degree angle mode:	
Converts the argument to radian angle measure.	(1.5)▶Rad	(0.02618)r
Note: You can insert this operator from the computer keyboa typing @>Rad.	ird by In Gradian angle mode:	· · ·
	(1.5)▶Rad	(0.023562)r

rand()		Catalog > 📆 🖁
rand() \Rightarrow expression rand(#Trials) \Rightarrow list	Sets the random-	number seed.
rand() returns a random value between 0 and 1. rand(#Trials) returns a list containing #Trials random values	RandSeed 1147	Done
between 0 and 1.	rand(2)	{0.158206,0.717917}

randBin()		Catalog > 🗓 🗓
$\mathbf{randBin}(n,p) \Rightarrow expression$ $\mathbf{randBin}(n,p,\#Trials) \Rightarrow list$ $\mathbf{randBin}(n,p)$ returns a random real number from a specified Binomial distribution.	randBin(80,.5) randBin(80,.5,3)	34. {47.,41.,46.}
randBin (n, p, #Trials) returns a list containing #Trials random real numbers from a specified Binomial distribution.		

randint()		Catalog > [][2]
$\begin{tabular}{ll} \textbf{randint}(lowBound, upBound) &\Rightarrow expression \\ \textbf{randint}(lowBound, upBound ,\#Trials) &\Rightarrow list \\ \textbf{randint}(lowBound, upBound) \text{ returns a random integer within the range specified by }lowBound \text{ and }upBound \text{ integer bounds}. \\ \end{tabular}$	randInt(3,10) randInt(3,10,4)	7. {8.,9.,4.,4.}

range specified by lowBound and upBound integer bounds. randInt(lowBound,upBound ,#Trials) returns a list containing #Trials random integers within the specified range.		
#1rtats fandom integers within the specified range.		
randMat()		Catalog > 📳
$randMat(numRows, numColumns) \Rightarrow matrix$	RandSeed 1147	Done
Returns a matrix of integers between -9 and 9 of the specified dimension.	randMat(3,3)	
Both arguments must simplify to integers.		$\begin{bmatrix} 8 & -3 & 6 \\ -2 & 3 & -6 \\ 0 & 4 & -6 \end{bmatrix}$
	Note: The values in this matrix will enter .	change each time you press

randNorm()		Catalog > 🔃
randNorm(μ , σ) \Rightarrow expression randNorm(μ , σ , #Trials) \Rightarrow list	RandSeed 1147	Done
randNorm(μ, σ) returns a decimal number from the specified normal distribution. It could be any real number but will be heavily concentrated in the interval $[\mu - 3 \cdot \sigma, \mu + 3 \cdot \sigma]$.	randNorm(0,1)	0.492541
	randNorm(3,4.5)	-3.54356
$randNorm(\mu, \sigma, \#Trials)$ returns a list containing $\#Trials$ decimal numbers from the specified normal distribution.		

randPoly() Catalog > 2 randPoly(Var, Order) ⇒ expression

Returns a polynomial in Var of the specified Order. The coefficients are random integers in the range -9 through 9. The leading coefficient will not be zero.

RandSeed 1147 Done randPoly(x,5) $-2 \cdot x^5 + 3 \cdot x^4 - 6 \cdot x^3 + 4 \cdot x - 6$

Catalog > 🚉

Order must be 0-99.

RandSeed

RandSeed Number

randSamp()		Catalog > 22
randSamp(List,#Trials[,noRepl]) ⇒ list	Define <i>list3</i> = $\{1,2,3,4,5\}$	Done
Returns a list containing a random sample of $\#Trials$ trials from $List$ with an option for sample replacement $(noRepl=0)$, or no sample	Define list4=randSamp(list3,	,6) Done
replacement (noRepl=1). The default is with sample replacement.	list4	5.,1.,3.,3.,4.,4.

RandSeed Number		
If $Number = 0$, sets the seeds to the factory defaults for the random- number generator. If $Number \neq 0$, it is used to generate two seeds, which are stored in system variables seed1 and seed2.	RandSeed 1147	Done
	rand()	0.158206
real()		Catalog >
$real(Value1) \Rightarrow value$	$real(2+3\cdot i)$	2
Returns the real part of the argument.	Teal(2+3-1)	
$real(ListI) \Rightarrow list$	1/(1,2:2:1)	[120]

$real(Value 1) \Rightarrow value$	$real(2+3\cdot i)$	2
Returns the real part of the argument.	<u>real(2+3-1)</u>	
$real(List1) \Rightarrow list$	$real(\{1+3\cdot i,3,i\})$	J ₁₂₀
Returns the real parts of all elements.	$\frac{\text{real}(\{1\pm 3\cdot t,3,t\})}{}$	1,5,0 }
real(Matrix1) ⇒ matrix	J[1+2.; 2])	[1 2]
Returns the real parts of all elements.	$real \begin{bmatrix} 1+3 \cdot i & 3 \\ 2 & i \end{bmatrix}$	$\begin{bmatrix} 1 & 3 \\ 2 & 0 \end{bmatrix}$

▶Rect	Catalog > [3][3]
Vector >Rect	(f])
Note: You can insert this operator from the computer keyboard by typing @>Rect.	$\left[3 \ \angle \frac{\pi}{4} \ \angle \frac{\pi}{6} \right] \triangleright \text{Rect}$
Displays <i>Vector</i> in rectangular form [x, y, z]. The vector must be of dimension 2 or 3 and can be a row or a column.	[1.06066 1.06066 2.59808]

Note: >Rect is a display-format instruction, not a conversion function. You can use it only at the end of an entry line, and it does not update ans.

Note: See also ▶Polar, page 75.

82

PRect Catalog > [2]

complexValue ▶Rect

Displays complexValue in rectangular form a+bi. The complexValue can have any complex form. However, an $re^{i\theta}$ entry causes an error in Degree angle mode.

Note: You must use parentheses for an $(r \angle \theta)$ polar entry.

In Radian angle mode:

$\left\{ \frac{\pi}{}\right\}$	11.3986
4.e ³ ▶ Rect	

In Gradian angle mode:

In Degree angle mode:

$$((4 ∠ 60))$$
 Rect 2.+3.4641·*i*

Note: To type \angle , select it from the symbol list in the Catalog.

Catalog > [2]

ref()

 $ref(Matrix1[, Tol]) \Rightarrow matrix$

Returns the row echelon form of Matrix1.

Optionally, any matrix element is treated as zero if its absolute value is less than *Tol*. This tolerance is used only if the matrix has floating-point entries and does not contain any symbolic variables that have not been assigned a value. Otherwise, *Tol* is ignored.

- If you use ctrl enter or set the Auto or Approximate mode to Approximate, computations are done using floatingpoint arithmetic.
- If Tol is omitted or not used, the default tolerance is calculated as:

5E-14 • max(dim(Matrix1)) • rowNorm(Matrix1)

Avoid undefined elements in *Matrix1*. They can lead to unexpected results.

For example, if a is undefined in the following expression, a warning message appears and the result is shown as:

$$\operatorname{ref} \begin{bmatrix} a & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad \Rightarrow \begin{bmatrix} 1 & \frac{1}{a} & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

The warning appears because the generalized element 1/a would not be valid for a=0.

You can avoid this by storing a value to a beforehand or by using the constraint ("|") operator to substitute a value, as shown in the following example.

$$\operatorname{ref}\begin{bmatrix} a & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \mid a = 0 \implies \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

Note: See also rref(), page 88.

$\operatorname{ref}\begin{bmatrix} -2 & -2 & 0 & -6 \\ 1 & -1 & 9 & -9 \\ -5 & 2 & 4 & -4 \end{bmatrix} \qquad \begin{bmatrix} 1 & \frac{-2}{5} & \frac{-4}{5} & \frac{4}{5} \\ 0 & 1 & \frac{4}{7} & \frac{11}{7} \\ 0 & 0 & 1 & \frac{-62}{71} \end{bmatrix}$

remain()	Ca	talog > 🕎
remain(Value1, Value2) \Rightarrow value remain(List1, List2) \Rightarrow list remain(Matrix1, Matrix2) \Rightarrow matrix Returns the remainder of the first argument with respect to the second argument as defined by the identities: remain(x,0) = x	remain(7,0) remain(7,3) remain(-7,3) remain(7,-3) remain(-7,-3)	7 1 -1 1
remain(x,y) = $x-y \cdot iPart(x/y)$ As a consequence, note that remain($-x$,y) = $-remain(x,y)$. The result is either zero or it has the same sign as the first argument. Note: See also mod() , page 64.	remain($\{12, -14, 16\}, \{9, 7, -5\}$) remain($\{9, -7\}, [4, 3], \{4, -3\}$)	$ \begin{array}{c} 1 \\ 3,0,1 \end{array} $ $ \begin{bmatrix} 1 & -1 \\ 2 & 1 \end{bmatrix} $

Request Catalog > 23

Request promptString, var[, DispFlag [, statusVar]] Request promptString, func(arg1, ...argn) [, DispFlag [, statusVar]]

Programming command: Pauses the program and displays a dialog box containing the message promptString and an input box for the user's response.

When the user types a response and clicks **OK**, the contents of the input box are assigned to variable var.

If the user clicks **Cancel**, the program proceeds without accepting any input. The program uses the previous value of var if var was already defined.

The optional DispFlag argument can be any expression.

- If DispFlag is omitted or evaluates to 1, the prompt message and user's response are displayed in the Calculator history.
- If DispFlag evaluates to 0, the prompt and response are not displayed in the history.

The optional status Var argument gives the program a way to determine how the user dismissed the dialog box. Note that statusVar requires the DispFlag argument.

- If the user clicked **OK** or pressed **Enter** or **Ctrl+Enter**, variable
- statusVar is set to a value of 1. Otherwise, variable status Var is set to a value of 0.

The func() argument allows a program to store the user's response as a function definition. This syntax operates as if the user executed the

Define func(arg1, ...argn) = user's response

The program can then use the defined function func(). The promptString should quide the user to enter an appropriate user's response that completes the function definition.

Note: You can use the Request command within a user-defined program but not within a function.

To stop a program that contains a Request command inside an infinite loop:

- Windows®: Hold down the F12 key and press Enter repeatedly.
- Macintosh®: Hold down the F5 key and press Enter
- Handheld: Hold down the file on key and press enter repeatedly.

Note: See also RequestStr, page 85.

Define a program:

Define request_demo()=Prgm Request "Radius: ",r Disp "Area = ", $pi*r^2$ EndPrgm

Run the program and type a response: request_demo()

Result after selecting **OK**:

Radius: 6/2 Area= 28.2743

Define a program:

Define polynomial()=Prgm
Request "Enter a polynomial in x:",p(x)
Disp "Real roots are:",polyRoots(p(x),x) EndPrgm

Run the program and type a response:

polynomial()

Result after selecting OK:

Enter a polynomial in x: x^3+3x+1 Real roots are: {-0.322185}

RequestStr

Catalog > 13

RequestStr promptString, var[, DispFlag]

Programming command: Operates identically to the first syntax of the Request command, except that the user's response is always interpreted as a string. By contrast, the **Request** command interprets the response as an expression unless the user encloses it in quotation marks ("").

Note: You can use the RequestStr command within a userdefined program but not within a function.

To stop a program that contains a RequestStr command inside an infinite loop:

- Windows®: Hold down the F12 key and press Enter repeatedly.
- Macintosh®: Hold down the F5 key and press Enter repeatedly.
- Handheld: Hold down the Go on key and press enter repeatedly.

Note: See also Request, page 84.

Define a program:

Define requestStr_demo()=Prgm RequestStr "Your name:",name.0

Disp "Response has ",dim(name)," characters." EndPram

Run the program and type a response: requestStr_demo()

Result after selecting **OK** (Note that the DispFlag argument of **0** omits the prompt and response from the history):

requestStr_demo()

factoral(3)

Response has 5 characters.

Catalog > 23

6

Return Return [Expr]

sourceString.

Returns Expr as the result of the function. Use within a

Func...EndFunc block.

Note: Use Return without an argument within a Prgm...EndPrgm block to exit a program.

Note for entering the example: In the Calculator application on the handheld, you can enter multi-line definitions by pressing 4 instead of enter at the end of each line. On the computer keyboard, hold down Alt and press Enter.

Define factoral(nn)=Func Local answer.count $1 \rightarrow answer$ For count, 1, nn answer · count → answer EndFor Return answer EndFunc Done

right()		Catalog >
right(List1[, Num]) ⇒ list	right({1,3,-2,4},3)	{3,-2,4}
Returns the rightmost Num elements contained in $List1$.	11ght([1,5, 2,±],5]	[3, 2, 4]
If you omit Num, returns all of List1.		
right(sourceString[, Num]) ⇒ string	right("Hello",2)	"lo"
Returns the rightmost Num characters contained in character string		

Returns the right side of an equation or inequality.

If you omit Num, returns all of sourceString. right(Comparison) ⇒ expression

rk23(Expr. Var. depVar. {Var0, VarMax}, depVar0, VarStep [, diftol]) \Rightarrow matrix

rk23(SystemOfExpr, Var, ListOfDepVars, {Var0, VarMax}, ListOfDepVars0, VarStep [, diftol])

matrix

rk23(ListOfExpr, Var, ListOfDepVars, {Var0, VarMax}, ListOfDepVars0, VarStep [, diftol]) => matrix

Uses the Runge-Kutta method to solve the system

$$\frac{d \ dep \ Var}{d \ Var} = Expr(Var, dep \ Var)$$

with depVar(Var0)=depVar0 on the interval [Var0.VarMax]. Returns a matrix whose first row defines the Var output values as defined by VarStep. The second row defines the value of the first solution component at the corresponding Var values, and so on.

Expr is the right hand side that defines the ordinary differential equation (ODE).

SystemOfExpr is a system of right-hand sides that define the system of ODEs (corresponds to order of dependent variables in ListOfDepVars).

ListOfExpr is a list of right-hand sides that define the system of ODEs (corresponds to order of dependent variables in ListOfDenVars).

Var is the independent variable.

ListOfDepVars is a list of dependent variables.

{Var0. VarMax} is a two-element list that tells the function to integrate from Var0 to VarMax.

ListOfDepVars0 is a list of initial values for dependent variables.

If VarStep evaluates to a nonzero number: sign(VarStep) =sign(VarMax-Var0) and solutions are returned at Var0+i*VarStep for all i=0,1,2,... such that Var0+i*VarStep is in [var0, VarMax] (may not get a solution value at VarMax).

if VarStep evaluates to zero, solutions are returned at the "Runge-Kutta" Var values.

can be a real or complex floating point constant or an integer or

diftol is the error tolerance (defaults to 0.001).

Differential equation:

y'=0.001*y*(100-y) and y(0)=10

To see the entire result, press ▲ and then use ◀ and ▶ to move the cursor.

Same equation with diftol set to 1.E . 6

System of equations:

$$\begin{cases} yI' = -yI + 0.1 \cdot yI \cdot y2 \\ y2 = 3 \cdot y2 - yI \cdot y2 \end{cases}$$
with $yI(0) = 2$ and $y2(0) = 5$

rk23
$$\left\{ \begin{bmatrix} -yI + 0.1 \cdot yI \cdot y2 \\ 3 \cdot y2 - yI \cdot y2 \end{bmatrix}, t, \{yI, y2\}, \{0, 5\}, \{2, 5\}, 1 \right\}$$
 $\begin{bmatrix} 0. & 1. & 2. & 3. & 4. \\ 2. & 1.94103 & 4.78694 & 3.25253 & 1.82848 \\ 5. & 16.8311 & 12.3133 & 3.51112 & 6.27245 \end{bmatrix}$

root()		Catalog > 📆 🖁
root(Value) ⇒ root root(Value), Value2) ⇒ root	3/8	2
root(Value) returns the square root of Value.	3/2	1.44225
root(Value1, Value2) returns the Value2 root of Value1. Value1	<u> 13</u>	

Note: See also Nth root template, page 1.

complex rational constant.

rotate() Catalog > 22

rotate(Integer1[,#ofRotations]) ⇒ integer

Rotates the bits in a binary integer. You can enter Integer1 in any number base; it is converted automatically to a signed, 64-bit binary form. If the magnitude of Integer 1 is too large for this form, a symmetric modulo operation brings it within the range. For more information, see ▶Base2, page 12.

In Rin base mode:

rotate(256,1) 0b1000000000

To see the entire result, press ▲ and then use ◀ and ▶ to move the cursor.

rotate() Catalog > [a]3

If #ofRotations is positive, the rotation is to the left. If #ofRotations is negative, the rotation is to the right. The default is -1 (rotate right one bit).

For example, in a right rotation:

| n | Hex base mode: | rotate(0h78E) | 0h3C7 | rotate(0h78E,-2) | 0h8000000000001E3 | rotate(0h78E,2) | 0h1E38

Important: To enter a binary or hexadecimal number, always use the 0b or 0h prefix (zero, not the letter O).

Each bit rotates right.

0b0000000000001111010110000110101

Rightmost bit rotates to leftmost.

produces:

0b1000000000000111101011000011010

The result is displayed according to the Base mode.

 $rotate(List1[\#ofRotations]) \Rightarrow list$

Returns a copy of *List1* rotated right or left by #of Rotations elements. Does not alter *List1*.

If #ofRotations is positive, the rotation is to the left. If #ofRotations is negative, the rotation is to the right. The default is -1 (rotate right one element).

rotate(String1[,#ofRotations]) ⇒ string

Returns a copy of String1 rotated right or left by #ofRotations characters. Does not alter String1.

If #ofRotations is positive, the rotation is to the left. If #ofRotations is negative, the rotation is to the right. The default is -1 (rotate right one character).

In Dec base mode:

rotate({1,2,3,4})	{4,1,2,3}
rotate({1,2,3,4},-2)	{3,4,1,2}
rotate({1,2,3,4},1)	{2,3,4,1}

"dabc"
"cdab"
"bcda"

round()		Catalog > [2]
$round(Value I[, digits]) \Rightarrow value$	round(1.234567,3)	1.235

Returns the argument rounded to the specified number of digits after the decimal point.

digits must be an integer in the range 0–12. If digits is not included, returns the argument rounded to 12 significant digits.

Note: Display digits mode may affect how this is displayed.

 $round(List1[, digits]) \Rightarrow list$

----A-I-I/

Returns a list of the elements rounded to the specified number of digits.

round(Matrix1[, digits]) ⇒ matrix

Returns a matrix of the elements rounded to the specified number of digits.

round($\{\pi,\sqrt{2},\ln(2)\},4$)
{3.1416,1.4142,0.6931}

round
$$\begin{bmatrix} \ln(5) & \ln(3) \\ \pi & e^1 \end{bmatrix}$$
, 1 $\begin{bmatrix} 1.6 & 1.1 \\ 3.1 & 2.7 \end{bmatrix}$

rowAdd()		Catalog > 🕎
rowAdd(Matrix1, rIndex1, rIndex2) ⇒ matrix	$rowAdd \begin{bmatrix} 3 & 4 \\ 1,1,2 \end{bmatrix}$	[3 4]
Returns a copy of <i>Matrix1</i> with row <i>rIndex2</i> replaced by the sum of rows <i>rIndex1</i> and <i>rIndex2</i> .	rowAdd [3 -1],1,2	$\begin{bmatrix} 0 & 1 \\ 0 & 2 \end{bmatrix}$

rowDim()		Catalog > [2]
rowDim(Matrix) ⇒ expression	1 2	[1 2]
Returns the number of rows in Matrix.	$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \rightarrow m1$	3 4
Note: See also colDim(), page 17.	[5 6]	[5 6]
	rowDim(m1)	3

rowNorm()	Catalog > [1][2]
rowNorm(Matrix) ⇒ expression Returns the maximum of the sums of the absolute values of the elements in the rows in Matrix.	$ \text{rowNorm} \begin{bmatrix} -5 & 6 & -7 \\ 3 & 4 & 9 \\ 9 & -9 & -7 \end{bmatrix} $ 25
Note: All matrix elements must simplify to numbers. See also colNorm() , page 17.	

rowSwap()		Catalog > [2]
rowSwap(Matrix1, rIndex1, rIndex2) ⇒ matrix Returns Matrix1 with rows rIndex1 and rIndex2 exchanged.	$\begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} \rightarrow mat$	1 2 3 4 5 6
	rowSwap(mat,1,3)	5 6 3 4 1 2

rref()	Catalog > 🎉 🕏
rref(Matrix1[, Tol]) ⇒ matrix	[-2 -2 0 -6]
Returns the reduced row echelon form of $Matrix 1$.	$\operatorname{rref} \begin{bmatrix} 2 & 2 & 3 & 3 \\ 1 & -1 & 9 & -9 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & \frac{33}{71} \\ 1 & 0 & 0 & \frac{33}{71} \end{bmatrix}$
	$ \begin{bmatrix} -5 & 2 & 4 & -4 \end{bmatrix} \qquad \qquad \begin{bmatrix} 0 & 1 & 0 & \frac{147}{71} \end{bmatrix} $
	$\begin{bmatrix} 0 & 0 & 1 & \frac{-62}{71} \end{bmatrix}$

Optionally, any matrix element is treated as zero if its absolute value is less than *Tol*. This tolerance is used only if the matrix has floating-point entries and does not contain any symbolic variables that have not been assigned a value. Otherwise, *Tol* is ignored.

- If you use ctrl enter or set the Auto or Approximate mode to Approximate, computations are done using floatingpoint arithmetic.

5E-14 • max(dim(Matrix1)) • rowNorm(Matrix1)

Note: See also ref(), page 83.

S

sec()		trig key
$sec(Value 1) \Rightarrow value$	In Degree angle mode:	
$sec(List1) \Rightarrow list$	sec(45)	1.41421
Returns the secant of $Value1$ or returns a list containing the secants of all elements in $List1$.		00015,1.00081,1.00244
Note: The argument is interpreted as a degree, gradian or radian angle, according to the current angle mode setting. You can use $^\circ$, G , or T to override the angle mode temporarily.		

sec ⁻¹ ()		^{trig} key
sec⁻¹(Value1) ⇒ value	In Degree angle mode:	
$sec^{-1}(List1) \Rightarrow list$	sec-1(1)	0
Returns the angle whose secant is $Value1$ or returns a list containing the inverse secants of each element of $List1$.	In Gradian angle mode:	
Note: The result is returned as a degree, gradian or radian angle, according to the current angle mode setting.	$\sec^{-1}(\sqrt{2})$	50
Note: You can insert this function from the keyboard by typing $arcsec()$.	In Radian angle mode:	
	sec-1({1,2,5})	{0,1.0472,1.36944}

sech()	Catalog > 🗐
sech(Value1) ⇒ value sech(List1) ⇒ list	sech(3) 0.099328
Returns the hyperbolic secant of $Value1$ or returns a list containing the hyperbolic secants of the $List1$ elements.	sech({1,2.3,4}) {0.648054,0.198522,0.036619}

sech ⁻¹ ()	Catalog > [a][3]
$sech^{-1}(Value 1) \Rightarrow value$	In Radian angle and Rectangular complex mode:
$sech^{-1}(ListI) \Rightarrow list$	$sech^{-1}(1)$ 0
Returns the inverse hyperbolic secant of <i>Value1</i> or returns a list containing the inverse hyperbolic secants of each element of <i>List1</i> .	sech-1({1,-2,2.1})
Note: You can insert this function from the keyboard by typing <code>arcsech()</code> .	

seq()

seq(Expr, Var, Low, High[, Step]) ⇒ list

Increments Var from Low through High by an increment of Step, evaluates Expr, and returns the results as a list. The original contents of Var are still there after **seq()** is completed.

The default value for Step = 1.

Catalog > [2]

$$\frac{\operatorname{seq}(n^{2}, n, 1, 6)}{\operatorname{seq}\left(\frac{1}{n}, n, 1, 10, 2\right)} \qquad \frac{\left\{1, 4, 9, 16, 25, 36\right\}}{\left\{1, \frac{1}{3}, \frac{1}{5}, \frac{1}{7}, \frac{1}{9}\right\}} \\
\operatorname{sum}\left(\operatorname{seq}\left(\frac{1}{2}, n, 1, 10, 1\right)\right) \qquad \frac{1968329}{1270080}$$

Press $\mathbf{Ctrl} + \mathbf{Enter}$ $\boxed{\mathbf{ctrl}}$ $\boxed{\mathbf{enter}}$ (Macintosh®: $\mathcal{H} + \mathbf{Enter}$) to evaluate:

$$\overline{\operatorname{sum}\left(\operatorname{seq}\left(\frac{1}{n^2}, n, 1, 10, 1\right)\right)}$$
 1.54977

seqGen()

seqGen(Expr, Var, depVar, {Var0, VarMax}[, ListOfInitTerms [, VarStep [, CeilingValue]]]) ⇒ list

Generates a list of terms for sequence depVar(Var)=Expr as follows: Increments independent variable Var from Var0 through VarMax by VarStep, evaluates depVar(Var) for corresponding values of Var using the Expr formula and ListOfInitTerms, and returns the results as a list.

seqGen(ListOrSystemOfExpr, Var, ListOfDepVars, {Var0, VarMax} [, MatrixOfInitTerms [, VarStep [, CeilingValue]]]) ⇒ matrix

Generates a matrix of terms for a system (or list) of sequences ListOfDepVars(Var)=ListOrSystemOfExpr as follows: Increments independent variable Var from VarO through VarMax by VarStep, evaluates ListOfDepVars(Var) for corresponding values of Var using ListOrSystemOfExpr formula and MatrixOfInitTerms, and returns the results as a matrix.

The original contents of Var are unchanged after **seqGen()** is completed.

The default value for VarStep = 1.

Catalog > 🚉

Generate the first 5 terms of the sequence $u(n) = u(n-1)^2/2$, with u(1)=2 and VarStep=1.

seqGen
$$\left(\frac{(u(n-1))^2}{n}, n, u, \{1,5\}, \{2\}\right)$$

$$\left\{2, 2, \frac{4}{3}, \frac{4}{9}, \frac{16}{405}\right\}$$

Example in which Var0=2:

$$\frac{1}{\operatorname{seqGen}\left(\frac{u(n-1)+1}{n}, n, u, \{2,5\}, \{3\}\right)} \left\{3, \frac{4}{3}, \frac{7}{12}, \frac{19}{60}\right\}$$

System of two sequences:

Note: The Void (_) in the initial term matrix above is used to indicate that the initial term for u1(n) is calculated using the explicit sequence formula u1(n)=1/n.

seqn()

seqn(
$$Expr(u, n [, ListOfInitTerms[, nMax [, CeilingValue]]]) $\Rightarrow list$$$

Generates a list of terms for a sequence u(n)=Expr(u, n) as follows: Increments n from 1 through nMax by 1, evaluates u(n) for corresponding values of n using the Expr(u, n) formula and ListOfIniTerms, and returns the results as a list.

Generates a list of terms for a non-recursive sequence u(n)=Expr(n) as follows: Increments n from 1 through nMax by 1, evaluates u(n) for corresponding values of n using the Expr(n) formula, and returns the results as a list.

If nMax is missing, nMax is set to 2500

If nMax=0, nMax is set to 2500

Note: seqn() calls seqGen() with $n\theta$ =1 and nstep =1

Generate the first 6 terms of the sequence u(n) = u(n-1)/2, with $u(1)=\mathbf{2}$.

$$\operatorname{seqn}\left(\frac{u(n-1)}{n}, \{2\}, 6\right) \\ \left\{2, 1, \frac{1}{3}, \frac{1}{12}, \frac{1}{60}, \frac{1}{360}\right\}$$

$$\operatorname{seqn}\left(\frac{1}{n^2}, 6\right) \qquad \left\{1, \frac{1}{4}, \frac{1}{9}, \frac{1}{16}, \frac{1}{25}, \frac{1}{36}\right\}$$

setMode()

Catalog > 🚉

setMode(modeNameInteger, settingInteger)
setMode(list) ⇒ integer list

Valid only within a function or program.

setMode(*modeNameInteger*, *settingInteger*) temporarily sets mode *modeNameInteger* to the new setting *settingInteger*, and returns an integer corresponding to the original setting of that mode. The change is limited to the duration of the program/ function's execution.

modeNameInteger specifies which mode you want to set. It must be one of the mode integers from the table below.

settingInteger specifies the new setting for the mode. It must be one of the setting integers listed below for the specific mode you are setting.

setMode(*list*) lets you change multiple settings. *list* contains pairs of mode integers and setting integers. **setMode**(*list*) returns a similar list whose integer pairs represent the original modes and settings.

If you have saved all mode settings with $\mathbf{getMode(0)} \rightarrow var$, you can use $\mathbf{setMode}(var)$ to restore those settings until the function or program exits. See $\mathbf{getMode()}$, page 42.

Note: The current mode settings are passed to called subroutines. If any subroutine changes a mode setting, the mode change will be lost when control returns to the calling routine.

Note for entering the example: In the Calculator application on the handheld, you can enter multi-line definitions by pressing in instead of enter at the end of each line. On the computer keyboard, hold down Alt and press Enter.

Display approximate value of π using the default setting for Display Digits, and then display π with a setting of Fix2. Check to see that the default is restored after the program executes.

Define
$$prog I$$
()=Prgm Done
Disp π
setMode(1,16)
Disp π
EndPrgm

EndPrgm	
prog1()	
	3.14159
	3.14
	Done

Mode Name	Mode Integer	Setting Integers
Display Digits	1	1=Float, 2=Float1, 3=Float2, 4=Float3, 5=Float4, 6=Float5, 7=Float6, 8=Float7, 9=Float8, 10=Float9, 11=Float10, 12=Float11, 13=Float12, 14=Fix0, 15=Fix1, 16=Fix2, 17=Fix3, 18=Fix4, 19=Fix5, 20=Fix6, 21=Fix7, 22=Fix8, 23=Fix9, 24=Fix10, 25=Fix11, 26=Fix12
Angle	2	1=Radian, 2=Degree, 3=Gradian

integer

Mode Name	Mode Integer	Setting Integers
Exponential Format	3	1=Normal, 2=Scientific, 3=Engineering
Real or Complex	4	1=Real, 2=Rectangular, 3=Polar
Auto or Approx.	5	1=Auto, 2=Approximate
Vector Format	6	1=Rectangular, 2=Cylindrical, 3=Spherical
Base	7	1=Decimal, 2=Hex, 3=Binary

shift()		Catalog > 📆
shift(Integer [#ofShifts]) => integer	In Bin base mode:	

shift(Integer1[,#ofShifts]) ⇒ integer

Shifts the bits in a binary integer. You can enter Integer1 in any number base; it is converted automatically to a signed, 64-bit binary form. If the magnitude of Integer 1 is too large for this form, a symmetric modulo operation brings it within the range. For more information, see >Base2, page 12.

If #ofShifts is positive, the shift is to the left. If #ofShifts is negative, the shift is to the right. The default is -1 (shift right one bit).

In a right shift, the rightmost bit is dropped and 0 or 1 is inserted to match the leftmost bit. In a left shift, the leftmost bit is dropped and 0 is inserted as the rightmost bit.

For example, in a right shift:

Each bit shifts right.

0b0000000000000111101011000011010

Inserts 0 if leftmost bit is 0. or 1 if leftmost bit is 1.

produces:

0b0000000000000111101011000011010

The result is displayed according to the Base mode. Leading zeros are not shown.

 $shift(List1 [\#ofShifts]) \Rightarrow list$

Returns a copy of List1 shifted right or left by #ofShifts elements. Does not alter List1.

If #ofShifts is positive, the shift is to the left. If #ofShifts is negative, the shift is to the right. The default is -1 (shift right one element).

Elements introduced at the beginning or end of list by the shift are set to the symbol "undef".

shift(String1 [,#ofShifts]) ⇒ string

Returns a copy of String 1 shifted right or left by #ofShifts characters. Does not alter String 1.

If #ofShifts is positive, the shift is to the left. If #ofShifts is negative, the shift is to the right. The default is -1 (shift right one character).

Characters introduced at the beginning or end of string by the shift are set to a space.

shift(0b1111010110000110101)

0b111101011000011010 shift(256,1) 0b10000000000

In Hex base mode:

shift(0h78E)	0h3C7
shift(0h78E,-2)	0h1E3
shift(0h78E,2)	0h1E38

Important: To enter a binary or hexadecimal number, always use the 0b or 0h prefix (zero, not the letter 0).

In Dac hase mode

$shift(\{1,2,3,4\})$	{undef,1,2,3}
shift({1,2,3,4},-2)	$\{undef,undef,1,2\}$
shift({1,2,3,4},2)	${3,4,undef,undef}$

shift("abcd")	" abc"
shift("abcd",-2)	" ab"
shift("abcd",1)	"bcd "

sian() Catalog > 13 $sign(Value I) \Rightarrow value$

 $sign(List1) \Rightarrow list$ $sign(Matrix1) \Rightarrow matrix$

For real and complex Value 1, returns Value 1 / abs(Value 1) when $Value 1 \pm 0$

Returns 1 if Value 1 is positive.

Returns -1 if Value 1 is negative.

sign(0) returns ± 1 if the complex format mode is Real; otherwise, it returns itself

sign(0) represents the unit circle in the complex domain.

For a list or matrix, returns the signs of all the elements.

sign(-3.2)	-1
sign({2,3,4,-5})	{1,1,1,-1}

If complex format mode is Real:

sign([-3 0	3])	[-1	undef	1

simult() Catalog > 2

Solve for x and y:

x + 2y = 1

3x + 4y = -1

simult∏1

Solve:

ax + by = 1

cx + dy = 2

The solution is x=-3 and y=2.

simult(coeffMatrix, constVector[, Toll) \Rightarrow matrix

Returns a column vector that contains the solutions to a system of linear equations.

Note: See also linSolve(), page 55.

coeffMatrix must be a square matrix that contains the coefficients of the equations.

constVector must have the same number of rows (same dimension) as coeffMatrix and contain the constants.

Optionally, any matrix element is treated as zero if its absolute value is less than Tol. This tolerance is used only if the matrix has floatingpoint entries and does not contain any symbolic variables that have not been assigned a value. Otherwise, Tol is ignored.

- If you set the Auto or Approximate mode to Approximate, computations are done using floating-point arithmetic.
- 5E-14 max(dim(coeffMatrix)) rowNorm(coeffMatrix)

If Tol is omitted or not used, the default tolerance is calculated

2 2 1 → matx1 13 3 4 0 simult/*matx1* 1 2

simult(coeffMatrix, constMatrix[, Tol]) ⇒ matrix

Solves multiple systems of linear equations, where each system has the same equation coefficients but different constants.

Each column in constMatrix must contain the constants for a system of equations. Each column in the resulting matrix contains the solution for the corresponding system.

Solve:

$$x + 2y = 1$$

 $3x + 4y = -1$

$$x + 2y = 2$$

$$3x + 4y = -3$$

$$\begin{array}{c|c}
\hline
simult \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, \begin{bmatrix} 1 & 2 \\ -1 & -3 \end{bmatrix} \\
\hline
\begin{bmatrix} -3 & -7 \\ 2 & \frac{9}{2} \end{bmatrix}
\end{array}$$

For the first system, x=-3 and y=2. For the second system, x=-7 and y=9/2.

sin()

sin(Value1) ⇒ value

 $sin(List1) \Rightarrow list$

sin(Value 1) returns the sine of the argument.

sin(List1) returns a list of the sines of all elements in List1.

Note: The argument is interpreted as a degree, gradian or radian angle, according to the current angle mode. You can use °, G, or r to override the angle mode setting temporarily.

In Degree angle mode:

$\overline{\sin\!\left(\!\!\left(\frac{\pi}{4}\!\right)^{\!r}\!\right)}$	0.707107

trig kev

trig kev

$$\frac{\sin(45)}{\sin(\{0,60,90\})}$$
 $\frac{(0,0.866025,1.)}{(0,0.866025,1.)}$

In Gradian angle mode:

sin(50)	0.707107

In Radian angle mode:

$\overline{\sin\!\left(\!\frac{\pi}{4}\!\right)}$	0.707107
sin(45°)	0.707107

In Radian angle mode:

$$\sin \begin{vmatrix} 1 & 5 & 3 \\ 4 & 2 & 1 \\ 6 & -2 & 1 \end{vmatrix} \\
= \begin{vmatrix} 0.9424 & -0.04542 & -0.031999 \\ -0.045492 & 0.949254 & -0.020274 \\ -0.048739 & -0.00523 & 0.961051 \end{vmatrix}$$

sin(squareMatrix1) ⇒ squareMatrix

Returns the matrix sine of *squareMatrix1*. This is not the same as calculating the sine of each element. For information about the calculation method, refer to **cos()**.

squareMatrix1 must be diagonalizable. The result always contains floating-point numbers.

sin-1()

 $sin^{-1}(Value I) \Rightarrow value$

 $sin^{-1}(List1) \implies list$

sin⁻¹(Value1) returns the angle whose sine is Value1.

 $\sin^{-1}(List1)$ returns a list of the inverse sines of each element of List1.

Note: The result is returned as a degree, gradian or radian angle, according to the current angle mode setting.

Note: You can insert this function from the keyboard by typing arcsin(...).

 $sin^{-1}(squareMatrix1) \Rightarrow squareMatrix$

Returns the matrix inverse sine of *squareMatrix1*. This is not the same as calculating the inverse sine of each element. For information about the calculation method, refer to **cos()**.

squareMatrix1 must be diagonalizable. The result always contains floating-point numbers.

In Degree angle mode:

In Gradian angle mode:

In Radian angle mode:

$$\sin^{-1}(\{0,0.2,0.5\})$$
 {0,0.201358,0.523599}

In Radian angle mode and Rectangular complex format mode:

$$\sin^{-1} \begin{pmatrix} 1 & 5 & 3 \\ 4 & 2 & 1 \\ 6 & -2 & 1 \end{pmatrix}$$

To see the entire result, press ▲ and then use ◀ and ▶ to move the cursor.

sinh() Catalog > [[]]

 $sinh(Numver1) \Rightarrow value$ $sinh(List1) \Rightarrow list$

sinh (Value 1) returns the hyperbolic sine of the argument.

sinh (*List1*) returns a list of the hyperbolic sines of each element of *List1*.

sinh(squareMatrix1) ⇒ squareMatrix

Returns the matrix hyperbolic sine of *squareMatrix1*. This is not the same as calculating the hyperbolic sine of each element. For information about the calculation method, refer to **cos()**.

squareMatrix1 must be diagonalizable. The result always contains floating-point numbers.

 $\sinh(1.2)$ 1.50946 $\sinh(\{0,1.2,3.\})$ $\{0,1.50946,10.0179\}$

In Radian angle mode:

$$sinh \begin{pmatrix}
1 & 5 & 3 \\
4 & 2 & 1 \\
6 & -2 & 1
\end{pmatrix}$$

$$\begin{vmatrix}
360.954 & 305.708 & 239.604 \\
352.912 & 233.495 & 193.564 \\
298.632 & 154.599 & 140.251
\end{vmatrix}$$

sinh⁻¹() Catalog > [1]

 $sinh^{-1}(Value 1) \Rightarrow value$ $sinh^{-1}(List 1) \Rightarrow list$

sinh⁻¹(Value I) returns the inverse hyperbolic sine of the argument.

 $sinh^{-1}(List1)$ returns a list of the inverse hyperbolic sines of each element of List1.

Note: You can insert this function from the keyboard by typing arcsinh(...).

sinh⁻¹(sauareMatrix1) ⇒ sauareMatrix

Returns the matrix inverse hyperbolic sine of squareMatrix1. This is not the same as calculating the inverse hyperbolic sine of each element. For information about the calculation method, refer to cos().

squareMatrix1 must be diagonalizable. The result always contains floating-point numbers.

 $\frac{\sinh^{-1}(0)}{\sinh^{-1}(\{0,2.1,3\})} \qquad \frac{0}{\{0,1.48748,1.81845\}}$

In Radian angle mode:

$$sinh^{-1} \begin{bmatrix} 1 & 5 & 3 \\ 4 & 2 & 1 \\ 6 & -2 & 1 \end{bmatrix} \\
= \begin{bmatrix} 0.041751 & 2.15557 & 1.1582 \\ 1.46382 & 0.926568 & 0.112557 \\ 2.75079 & -1.5283 & 0.57268 \end{bmatrix}$$

SinReg X, Y [, [Iterations], [Period] [, Category, Include]]

Computes the sinusoidal regression on lists X and Y. A summary of results is stored in the stat.results variable. (See page 98.)

All the lists must have equal dimension except for Include.

X and Y are lists of independent and dependent variables.

Iterations is a value that specifies the maximum number of times (1 through 16) a solution will be attempted. If omitted, 8 is used. Typically, larger values result in better accuracy but longer execution times, and vice versa.

Period specifies an estimated period. If omitted, the difference between values in X should be equal and in sequential order. If you specify Period, the differences between x values can be unequal.

Category is a list of numeric or string category codes for the corresponding X and Y data.

Include is a list of one or more of the category codes. Only those data items whose category code is included in this list are included in the

The output of SinReg is always in radians, regardless of the angle mode setting.

For information on the effect of empty elements in a list, see "Empty (Void) Elements" on page 132.

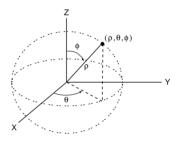
Output variable	Description
stat.RegEqn	Regression Equation: a • sin(bx+c)+d
stat.a, stat.b, stat.c, stat.d	Regression coefficients
stat.Resid	Residuals from the regression
stat.XReg	List of data points in the modified X List actually used in the regression based on restrictions of Freq, Category List, and Include Categories
stat.YReg	List of data points in the modified Y List actually used in the regression based on restrictions of Freq, Category List, and Include Categories
stat.FreqReg	List of frequencies corresponding to stat.XReg and stat.YReg

SortA		Catalog > 📆
SortA List1[, List2] [, List3] SortA Vector1[, Vector2] [, Vector3]	$\{2,1,4,3\} \rightarrow list1$	{2,1,4,3}
Sorts the elements of the first argument in ascending order.	SortA list1	Done
If you include additional arguments, sorts the elements of each so	list1	{1,2,3,4}
that their new positions match the new positions of the elements in the first argument.	$\{4,3,2,1\} \rightarrow list2$	$\{4,3,2,1\}$
All arguments must be names of lists or vectors. All arguments must have equal dimensions.	SortA list2,list1	Done
Empty (void) elements within the first argument move to the bottom.	list2	$\{1,2,3,4\}$
For more information on empty elements, see page 132.	list1	$\{4,3,2,1\}$

SortD		Catalog > 🕎 🔾
SortD List1[, List2] [, List3] SortD Vector1[,Vector2] [,Vector3]	$\{2,1,4,3\} \rightarrow list1$	{2,1,4,3}
Identical to SortA , except SortD sorts the elements in descending	$\{1,2,3,4\} \rightarrow list2$	{1,2,3,4}
order.	SortD list1,list2	Done
Empty (void) elements within the first argument move to the bottom. For more information on empty elements, see page 132.	list1	{4,3,2,1}
	list2	{3,4,1,2}

Sphere	Catalog > [[2]
	catalog > [a]

Vector ▶Sphere


Note: You can insert this operator from the computer keyboard by typing @>Sphere.

Displays the row or column vector in spherical form $[\rho \angle \theta \angle \phi]$.

 $\ensuremath{\textit{Vector}}$ must be of dimension 3 and can be either a row or a column vector.

Note: >Sphere is a display-format instruction, not a conversion function. You can use it only at the end of an entry line.

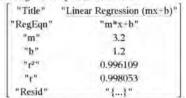
Note: See also Square root template, page 1.

sqrt()		Catalog > 🕎 🖟
sqrt(Value1) ⇒ value sqrt(List1) ⇒ list	$\sqrt{4}$	2
Returns the square root of the argument.	$\sqrt{\left\{9,2,4\right\}}$	{3,1.41421,2}
For a list, returns the square roots of all the elements in List1.		

stat.results

stat.results

Displays results from a statistics calculation.


The results are displayed as a set of name-value pairs. The specific names shown are dependent on the most recently evaluated statistics function or command.

You can copy a name or value and paste it into other locations.

Note: Avoid defining variables that use the same names as those used for statistical analysis. In some cases, an error condition could occur. Variable names used for statistical analysis are listed in the table below.

xlist:={1,2,3,4,5}	{1,2,3,4,5}	
vlist:={4,8,11,14,17}	{4,8,11,14,17}	

LinRegMx xlist,ylist,1: stat.results

stat.values	"Linear Regression (mx+b)"
	"m*x+b"
	3.2
	1.2
	0.996109
	0.998053
	"(-0.4,0.4,0.2,0.,-0.2)"

stat.a	stat.dfDenom	stat.MedianY	stat.Q3X	stat.SSBlock
stat.AdjR ²	stat.dfBlock	stat.MEPred	stat.Q3Y	stat.SSCol
stat.b	stat.dfCol	stat.MinX	stat.r	stat.SSX
stat.b0	stat.dfError	stat.MinY	stat.r ²	stat.SSY
stat.b1	stat.dfInteract	stat.MS	stat.RegEqn	stat.SSError
stat.b2	stat.dfReg	stat.MSBlock	stat.Resid	stat.SSInteract
stat.b3	stat.dfNumer	stat.MSCol	stat.ResidTrans	stat.SSReg
stat.b4	stat.dfRow	stat.MSError	stat. σx	stat.SSRow
stat.b5	stat.DW	stat.MSInteract	stat. o y	stat.tList
stat.b6	stat.e	stat.MSReg	stat.σx1	stat.UpperPred
stat.b7	stat.ExpMatrix	stat.MSRow	stat.ox2	stat.UpperVal
stat.b8	stat. F	stat.n_	stat.Σx	stat. $\overline{\mathbf{X}}$
stat.b9	stat. F Block	stat. p		stat. $\overline{\mathbf{x}}$ 1
stat.b10	stat. F col	stat. p 1	stat.Σx²	stat. \overline{x} 2
stat.bList	stat.FInteract	·^	stat.Σxy	stat.XDiff
stat.χ²	stat.FreqReq	stat. p 2	stat.Σy	stat.XList
stat.c	stat. Frow	stat. $\hat{m{p}}$ Diff	stat.Σy²	stat.XReq
stat.CLower	stat.Leverage	stat.PList	stat.s	stat.XVal
stat.CLowerList	stat.LowerPred	stat.PVal	stat.SE	stat.XValList
stat.CompList	stat.LowerVal	stat.PValBlock	stat.SEList	stat. $\overline{\mathbf{y}}$
stat.CompMatrix	stat.m	stat.PValCol	stat.SEPred	•
stat.CookDist	stat.MaxX	stat.PValInteract	stat.sResid	stat. ŷ
stat.CUpper	stat.MaxY	stat.PValRow	stat.SEslope	stat. ŷ List
stat.CUpperList	stat.MF	stat.Q1X	stat.sp	stat.YReq
stat.d	stat.MedianX	stat.O1Y	stat.SS	stat. They

Note: Each time the Lists & Spreadsheet application calculates statistical results, it copies the "stat." group variables to a "stat#." group, where # is a number that is incremented automatically. This lets you maintain previous results while performing multiple calculations.

stat.values

Displays a matrix of the values calculated for the most recently evaluated statistics function or command.

Unlike stat.results, stat.values omits the names associated with the values

You can copy a value and paste it into other locations.

See the stat.results example.

stDevPop() Catalog > 13

$stDevPop(List[, freqList]) \Rightarrow expression$

Returns the population standard deviation of the elements in List.

Each freqList element counts the number of consecutive occurrences of the corresponding element in List.

Note: List must have at least two elements. Empty (void) elements are ignored. For more information on empty elements, see page 132.

$$stDevPop(Matrix1[, freqMatrix]) \Rightarrow matrix$$

Returns a row vector of the population standard deviations of the columns in Matrix 1.

Each freaMatrix element counts the number of consecutive occurrences of the corresponding element in Matrix1.

Note: Matrix1 must have at least two rows. Empty (void) elements are ignored. For more information on empty elements, see page 132. In Radian angle and auto modes:

$$\begin{array}{ll} stDevPop(\{1,2,5,-6,3,-2\}) & 3.59398 \\ \hline stDevPop(\{1.3,2.5,-6.4\},\{3,2,5\}) & 4.11107 \\ \end{array}$$

stDevPop
$$\begin{bmatrix} 1 & 2 & 5 \\ -3 & 0 & 1 \\ 5 & 7 & 3 \end{bmatrix}$$
 [3.26599 2.94392 1.63299]

stDevSamp()

 $stDevSamp(List[, freqList]) \Rightarrow expression$

Returns the sample standard deviation of the elements in List.

Each freqList element counts the number of consecutive occurrences of the corresponding element in List.

Note: List must have at least two elements. Empty (void) elements are ignored. For more information on empty elements, see page 132.

 $stDevSamp(Matrix1[, freqMatrix]) \Rightarrow matrix$

Returns a row vector of the sample standard deviations of the columns in Matrix1.

Each freqMatrix element counts the number of consecutive occurrences of the corresponding element in Matrix1.

Note: Matrix1 must have at least two rows. Empty (void) elements are ignored. For more information on empty elements, see page 132.

Catalog > 2

stDevPop
$$\begin{bmatrix} 1 & 2 & 5 \\ -3 & 0 & 1 \\ 5 & 7 & 3 \end{bmatrix}$$
 $\begin{bmatrix} 3.26599 & 2.94392 & 1.63299 \end{bmatrix}$

$$stDevPop \begin{bmatrix} -1.2 & 5.3 \\ 2.5 & 7.3 \\ 6 & -4 \end{bmatrix} \begin{bmatrix} 4 & 2 \\ 3 & 3 \\ 1 & 7 \end{bmatrix}$$
 [2.52608 5.21506]

Stop		Catalog > [2]
Stop Programming command: Terminates the program.	<i>i</i> :=0	0
Stop is not allowed in functions. Note for entering the example: In the Calculator application on the handheld, you can enter multi-line definitions by pressing which instead of enter at the end of each line. On the computer keyboard, hold down Alt and press Enter.	Define $prog1$ ()=Prgm For i ,1,10,1 If i =5 Stop EndFor EndPrgm	Done
	prog1()	Done
	i	5

Store See → (store), page 130.

string()		Catalog > 🔃
string ($Expr$) \Rightarrow $string$ Simplifies $Expr$ and returns the result as a character string.	string(1.2345)	"1.2345"
simplines <i>Expr</i> and returns the result as a character string.	string(1+2)	"3"

subMat()		Catalog	> [@	[3]
subMat(Matrix1[, startRow] [, startCol] [, endRow] [, endCol]) ⇒ matrix Returns the specified submatrix of Matrix1. Defaults: startRow=1, startCol=1, endRow=last row, endCol=last column.	$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} \rightarrow m1$ $subMat(m1,2,1,3,2)$ $subMat(m1,2,2)$	[7 [_	3 6 9 5 8 6 9

Sum (Sigma) See Σ (), page 126.

sum()	Catalog > [a] [3]	
sum(List[, Start[, End]]) ⇒ expression	$sum(\{1,2,3,4,5\})$ 15	
Returns the sum of all elements in <i>List</i> . Start and <i>End</i> are optional. They specify a range of elements.	$\overline{\operatorname{sum}(\{a,2\cdot a,3\cdot a\})}$	
Any void argument produces a void result. Empty (void) elements in List are ignored. For more information on empty elements, see page 132.	"Error: Variable is not defined"	
	sum(seq(n,n,1,10)) 55	
.52	$sum(\{1,3,5,7,9\},3)$ 21	

sum()		Catalog > 📆 🖁
$sum(Matrix1[, Start[, End]]) \Rightarrow matrix$	sum[1 2 3]	[5 7 9]
Returns a row vector containing the sums of all elements in the columns in <i>Matrix1</i> .	4 5 6	
Start and End are optional. They specify a range of rows. Any void argument produces a void result. Empty (void) elements in Matrix I are ignored. For more information on empty elements, see page 132.	$ sum \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} $	[12 15 18]
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	[11 13 15]

sumIf()	Catalog > 🕎
---------	-------------

sumIf(List,Criteria[, SumList]) ⇒ value

Returns the accumulated sum of all elements in *List* that meet the specified *Criteria*. Optionally, you can specify an alternate list, *sumList*, to supply the elements to accumulate.

List can be an expression, list, or matrix. SumList, if specified, must have the same dimension(s) as List.

Criteria can be:

- A value, expression, or string. For example, 34 accumulates only those elements in List that simplify to the value 34.
- A Boolean expression containing the symbol ? as a placeholder for each element. For example, ?<10 accumulates only those elements in List that are less than 10.

When a *List* element meets the *Criteria*, the element is added to the accumulating sum. If you include *sumList*, the corresponding element from *sumList* is added to the sum instead.

Within the Lists & Spreadsheet application, you can use a range of cells in place of *List* and *sumList*.

Empty (void) elements are ignored. For more information on empty elements, see page 132.

Note: See also countif(), page 23.

$$\frac{\text{sumIf}(\{1,2,\textbf{e},3,\pi,4,5,6\},2.5<4.5)}{12.859874482}\\ \\ \text{sumIf}(\{1,2,3,4\},2<?<5,\{10,20,30,40\})</math$$

70

sumSeq() See ∑(), page 126.

system() Catalog > [2]

system(Value1 [, Value2 [, Value3 [, ...]]])

Returns a system of equations, formatted as a list. You can also create a system by using a template.

T

i (uaispose)		Catalog > 🗐 🔾
$MatrixI^{T} \Rightarrow matrix$	[1 2 3]	[1 4 7]
Returns the complex conjugate transpose of ${\it Matrix 1}$.	4 5 6	2 5 8
Note: You can insert this operator from the computer keyboard by typing @t.	[7 8 9]	[3 6 9]

tan()

tan(Value1) ⇒ value

tan(List1) ⇒ list

tan(Value1) returns the tangent of the argument.

tan(List1) returns a list of the tangents of all elements in List1.

Note: The argument is interpreted as a degree, gradian or radian angle, according to the current angle mode. You can use $^{\circ}$, G or r to override the angle mode setting temporarily.

In Degree angle mode:

$$\tan\left(\left(\frac{\pi}{4}\right)^{r}\right)$$
 1.

trig key

$$\tan(45)$$
 1. $\tan(\{0,60,90\})$ $\{0.,1.73205,\text{undef}\}$

In Gradian angle mode:

$$\tan\left(\left(\frac{\pi}{4}\right)^{r}\right)$$

$$\tan(50)$$
1.

$$\tan(\{0,50,100\})$$
 {0.,1.,undef}

In Radian angle mode:

$$\tan\left(\frac{\pi}{4}\right)$$
 1.

$$\frac{\tan(45^\circ)}{((1,173205.0.1)^2)}$$

$$\tan\left\{\left\{\pi, \frac{\pi}{3}, -\pi, \frac{\pi}{4}\right\}\right\}$$
 $\left\{0., 1.73205, 0., 1.\right\}$

In Radian angle mode:

$$\tan \begin{pmatrix} 1 & 5 & 3 \\ 4 & 2 & 1 \\ 6 & -2 & 1 \end{pmatrix}$$

$$\begin{bmatrix} -28.2912 & 26.0887 & 11.1142 \\ 12.1171 & -7.83536 & -5.48138 \\ 36.8181 & -32.8063 & -10.4594 \end{bmatrix}$$

tan(squareMatrix1) ⇒ squareMatrix

Returns the matrix tangent of *squareMatrix1*. This is not the same as calculating the tangent of each element. For information about the calculation method, refer to **cos()**.

squareMatrix1 must be diagonalizable. The result always contains floating-point numbers.

tan-1()

 $tan^{-1}(Value I) \Rightarrow value$ $tan^{-1}(List I) \Rightarrow list$

tan-1(Value1) returns the angle whose tangent is Value1.

tan⁻¹(List1) returns a list of the inverse tangents of each element of List1.

Note: The result is returned as a degree, gradian or radian angle, according to the current angle mode setting.

Note: You can insert this function from the keyboard by typing arctan(...).

In Degree angle mode:

tan⁻¹(1) 45

trig key

In Gradian angle mode:

 $\tan^{-1}(1)$ 50

In Radian angle mode:

tan-1({0,0.2,0.5}) {0,0.197396,0.463648}

tan-1()

tan⁻¹(squareMatrix1) ⇒ squareMatrix

Returns the matrix inverse tangent of *squareMatrix1*. This is not the same as calculating the inverse tangent of each element. For information about the calculation method, refer to **cos()**.

squareMatrix1 must be diagonalizable. The result always contains floating-point numbers.

In Radian angle mode:

$$\tan^{-1} \begin{bmatrix} 1 & 5 & 3 \\ 4 & 2 & 1 \\ 6 & -2 & 1 \end{bmatrix}$$

 -0.083658
 1.26629
 0.62263

 0.748539
 0.630015
 -0.070012

 1.68608
 -1.18244
 0.455126

tanh()

$$tanh(Value1) \Rightarrow value$$

 $tanh(List1) \Rightarrow list$

tanh(Value1) returns the hyperbolic tangent of the argument.

tanh(*List1*) returns a list of the hyperbolic tangents of each element of *List1*.

tanh(squareMatrix1) ⇒ squareMatrix

Returns the matrix hyperbolic tangent of *squareMatrix1*. This is not the same as calculating the hyperbolic tangent of each element. For information about the calculation method, refer to **cos()**.

squareMatrix1 must be diagonalizable. The result always contains floating-point numbers.

Catalog > ৄিুুু

$$\tanh(1.2)$$
 0.833655 $\tanh(\{0,1\})$ $\{0.,0.761594\}$

In Radian angle mode:

-1.03425

0.428817

Catalog > 23

tanh-1()

 $tanh^{-1}(Value I) \Rightarrow value$ $tanh^{-1}(List I) \Rightarrow list$

 $anh^{-1}(Value1)$ returns the inverse hyperbolic tangent of the argument.

 $anh^{-1}(List1)$ returns a list of the inverse hyperbolic tangents of each element of List1.

Note: You can insert this function from the keyboard by typing $\mathtt{arctanh}(...)$.

tanh⁻¹(squareMatrix1) ⇒ squareMatrix

Returns the matrix inverse hyperbolic tangent of squareMatrix I. This is not the same as calculating the inverse hyperbolic tangent of each element. For information about the calculation method, refer to cos().

squareMatrix1 must be diagonalizable. The result always contains floating-point numbers.

In Rectangular complex format:

1.28295

$$\frac{\tanh^{-1}(0)}{\tanh^{-1}(\{1,2.1,3\})}$$

$$\{\text{undef,}0.518046-1.5708} \cdot \mathbf{i}, 0.346574-1.570$$

To see the entire result, press ▲ and then use ◀ and ▶ to move the cursor.

In Radian angle mode and Rectangular complex format:

$$\tan h^{-1} \begin{bmatrix} 1 & 5 & 3 \\ 4 & 2 & 1 \\ 6 & -2 & 1 \end{bmatrix}$$

 $\begin{bmatrix} -0.099353+0.164058 \cdot \boldsymbol{i} & 0.267834-1.4908 \\ -0.087596-0.725533 \cdot \boldsymbol{i} & 0.479679-0.94730 \\ 0.511463-2.08316 \cdot \boldsymbol{i} & -0.878563+1.7901 \end{bmatrix}$

To see the entire result, press \triangle and then use \triangleleft and \triangleright to move the cursor.

tCdf() Catalog > [1] [2]

tCdf(lowBound,upBound,d**f)** ⇒ number if lowBound and upBound are numbers, list if lowBound and upBound are lists

Computes the Student-*t* distribution probability between *lowBound* and *upBound* for the specified degrees of freedom *df*.

For $P(X \le upBound)$, set lowBound = -9E999.

Text Catalog > [1]

Text promptString [, DispFlag]

Programming command: Pauses the program and displays the character string *promptString* in a dialog box.

When the user selects **OK**, program execution continues.

The optional flag argument can be any expression.

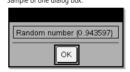
- If DispFlag is omitted or evaluates to 1, the text message is added to the Calculator history.
- If DispFlag evaluates to 0, the text message is not added to the history.

If the program needs a typed response from the user, refer to **Request**, page 84, or **RequestStr**, page 85.

Note: You can use this command within a user-defined program but not within a function.

Define a program that pauses to display each of five random numbers in a dialog box.

Within the Prgm...EndPrgm template, complete each line by pressing — instead of enter. On the computer keyboard, hold down Alt and press Enter.


Define text_demo()=Prgm For i,1,5

strinfo:="Random number " & string(rand(i))
Text strinfo

EndFor EndPram

Run the program: text demo()

Sample of one dialog box:

Then See If, page 45.

tinterval Catalog > [1]2

tInterval List[,Freq[,CLevel]]

(Data list input)

tinterval \overline{X} , sx, n[, CLevel]

(Summary stats input)

Computes a *t* confidence interval. A summary of results is stored in the *stat.results* variable. (See page 98.)

For information on the effect of empty elements in a list, see "Empty (Void) Elements" on page 132.

Output variable	Description
stat.CLower, stat.CUpper	Confidence interval for an unknown population mean
stat. $\overline{\mathbf{X}}$	Sample mean of the data sequence from the normal random distribution
stat.ME	Margin of error
stat.df	Degrees of freedom
stat. σ x	Sample standard deviation

Output variable	Description
stat.n	Length of the data sequence with sample mean

tInterval_2Samp

tInterval_2Samp

List1,List2[,Freq1[,Freq2[,CLevel[,Pooled]]]]

(Data list input)

tinterval_2Samp $\bar{X}1$,sx1,n1, $\bar{X}2$,sx2,n2[,CLevel[,Pooled]]

(Summary stats input)

Computes a two-sample t confidence interval. A summary of results is stored in the stat.results variable. (See page 98.)

Pooled=1 pools variances; Pooled=0 does not pool variances.

For information on the effect of empty elements in a list, see "Empty (Void) Elements" on page 132.

Output variable	Description
stat.CLower, stat.CUpper	Confidence interval containing confidence level probability of distribution
stat. $\overline{\mathbf{x}}$ 1- $\overline{\mathbf{x}}$ 2	Sample means of the data sequences from the normal random distribution
stat.ME	Margin of error
stat.df	Degrees of freedom
$\operatorname{stat}.\overline{\mathbf{x}}$ 1, $\operatorname{stat}.\overline{\mathbf{x}}$ 2	Sample means of the data sequences from the normal random distribution
stat. σ x1, stat. σ x2	Sample standard deviations for List 1 and List 2
stat.n1, stat.n2	Number of samples in data sequences
stat.sp	The pooled standard deviation. Calculated when Pooled = YES

tPdf() Catalog > [2]

 $tPdf(XVal,df) \Rightarrow number \text{ if } XVal \text{ is a number, } list \text{ if } XVal \text{ is a}$

Computes the probability density function (pdf) for the Student-t distribution at a specified x value with specified degrees of freedom df.

trace()		Catalog >
trace(squareMatrix) ⇒ value Returns the trace (sum of all the elements on the main diagonal) of	[1 2 3]	15
squareMatrix.	trace 4 5 6 7 8 9	
	a:=12	12
	$\operatorname{trace} \begin{bmatrix} a & 0 \\ 1 & a \end{bmatrix}$	24

Try

block1

block2

EndTry

Executes block1 unless an error occurs. Program execution transfers to block2 if an error occurs in block1. System variable errCode contains the error code to allow the program to perform error recovery. For a list of error codes, see "Error codes and messages," page 138.

block1 and block2 can be either a single statement or a series of statements separated with the ":" character.

Note for entering the example: In the Calculator application on the handheld, you can enter multi-line definitions by pressing

instead of enter at the end of each line. On the computer keyboard,

hold down **Alt** and press **Enter**.

Define prog 1()=Prgm Try z:=z+1 Disp "z incremented." Else Disp "Sorry, z undefined." EndTry EndPrgm

z:=1:prog1()

z incremented.

Done

Done

DelVar z:prog1()

Sorry, z undefined.

Done

Example 2

To see the commands **Try**, **CirErr**, and **PassErr** in operation, enter the eigenvals() program shown at the right. Run the program by executing each of the following expressions.

eigenvals
$$\begin{bmatrix} -3\\ -41\\ 5 \end{bmatrix}$$
, $\begin{bmatrix} -1 & 2 & -3.1 \end{bmatrix}$

Note: See also CirErr, page 17, and PassErr, page 74.

Define eigenvals(a,b)=Prgm

© Program eigenvals(A,B) displays eigenvalues of A·B

Disp "A= ",a

Disp "B= ",b Disp " "

Disp "Eigenvalues of A-B are: ".eigVI(a*b)

Else

If errCode=230 Then

Disp "Error: Product of A·B must be a square matrix" ClrErr

Else

PassErr

EndIf

EndTry EndPrgm

tTest

Catalog > 📆

tTest μ0,List[,Freq[,Hypoth]]

(Data list input)

tTest $\mu 0, \overline{X}, sx, n, [Hypoth]$

(Summary stats input)

Performs a hypothesis test for a single unknown population mean μ when the population standard deviation σ is unknown. A summary of results is stored in the $\mathit{stat.results}$ variable. (See page 98.)

Test H_0 : $\mu = \mu 0$, against one of the following:

For H_a : $\mu < \mu 0$, set Hypoth < 0

For H_a : $\mu \neq \mu 0$ (default), set Hypoth=0

For H_a : $\mu > \mu 0$, set Hypoth > 0

For information on the effect of empty elements in a list, see "Empty (Void) Elements" on page 132.

Output variable	Description
stat.t	$(\overline{\mathbf{x}} - \mu_0)$ / (stdev / sqrt(n))
stat.PVal	Smallest level of significance at which the null hypothesis can be rejected
stat.df	Degrees of freedom
$stat.\overline{\mathbf{X}}$	Sample mean of the data sequence in List
stat.sx	Sample standard deviation of the data sequence
stat.n	Size of the sample

tTest_2Samp

Catalog > 🕎 🕽

(Data list input)

 $\mathsf{tTest_2Samp}\ \overline{\mathsf{X}}\ l$,sx1,n1, $\overline{\mathsf{X}}\ 2$,sx2,n2[,Hypoth[,Pooled]]

(Summary stats input)

Computes a two-sample *t* test. A summary of results is stored in the *stat.results* variable. (See page 98.)

tTest_2Samp List1,List2[,Freq1[,Freq2[,Hypoth[,Pooled]]]]

Test H_0 : $\mu 1 = \mu 2$, against one of the following:

For H_a: μ 1< μ 2, set *Hypoth*<0

For H_a : $\mu 1 \neq \mu 2$ (default), set Hypoth=0

For H_a : $\mu 1 > \mu 2$, set Hypoth > 0

Pooled=1 pools variances

Pooled=0 does not pool variances

For information on the effect of empty elements in a list, see "Empty (Void) Elements" on page 132.

Output variable	Description
stat.t	Standard normal value computed for the difference of means
stat.PVal	Smallest level of significance at which the null hypothesis can be rejected
stat.df	Degrees of freedom for the t-statistic
stat. $\overline{\mathbf{x}}$ 1, stat. $\overline{\mathbf{x}}$ 2	Sample means of the data sequences in List 1 and List 2
stat.sx1, stat.sx2	Sample standard deviations of the data sequences in List 1 and List 2
stat.n1, stat.n2	Size of the samples
stat.sp	The pooled standard deviation. Calculated when Pooled=1.

tvmFV()	Catalog > [2]
$tvmFV(N,I,PV,Pmt,[PpY],[CpY],[PmtAt]) \Rightarrow value$	

term of the the make by all charges and a sense

Financial function that calculates the future value of money.

Note: Arguments used in the TVM functions are described in the table of TVM arguments, page 108. See also **amortTbl()**, page 6.

tvmFV(120,5,0,-500,12,12) 77641.1

tvml()	Cata	alog > 🔯
$tvml(N,PV,Pmt,FV,[PpY],[CpY],[PmtAt]) \Rightarrow value$	tvmI(240,100000,-1000,0,12,12)	10.5241
Financial function that calculates the interest rate per year.	tviiii(240,100000, 1000,0,12,12)	10.5241
Note: Arguments used in the TVM functions are described in the		

tvmN()		Catalog > [a][2]
$tvmN(I,PV,Pmt,FV,[PpY],[CpY],[PmtAt]) \Rightarrow value$	tvmN(5,0,-500,77641,12,12)	120.
Financial function that calculates the number of payment periods.	tviiin(5,0, 500,77641,12,12)	120.

tvmPmt()		Catalog > [a][2]
$\textbf{tvmPmt}(\textit{N,I,PV,FV,[PpY],[CpY],[PmtAt])} \Rightarrow \textit{value}$	tvmPmt(60,4,30000,0,12,12)	-552.496
Financial function that calculates the amount of each payment.	tviiiFiii(00,4,50000,0,12,12)	332.490

Note: Arguments used in the TVM functions are described in the table of TVM arguments, page 108. See also **amortTbl()**, page 6.

table of TVM arguments, page 108. See also amortTbl(), page 6.

Note: Arguments used in the TVM functions are described in the table of TVM arguments, page 108. See also **amortTbl()**, page 6.

tvmPV()	Catalo	og > 🔯
$\textbf{tvmPV}(\textit{N,I,Pmt,FV,[PpY],[CpY],[PmtAt])} \Rightarrow \textit{value}$	tvmPV(48,4,-500,30000,12,12)	-3426.7
Financial function that calculates the present value.	tviiir v(48,4, 500,50000,12,12)	J 1 20.7

Note: Arguments used in the TVM functions are described in the table of TVM arguments, page 108. See also **amortTbl()**, page 6.

TVM argument*	Description	Data type
N	Number of payment periods	real number
I	Annual interest rate	real number
PV	Present value	real number
Pmt	Payment amount	real number
FV	Future value	real number
PpY	Payments per year, default=1	integer > 0
СрҮ	Compounding periods per year, default=1	integer > 0
PmtAt	Payment due at the end or beginning of each period, default=end	integer (0=end, 1=beginning)

^{*} These time-value-of-money argument names are similar to the TVM variable names (such as **tvm.pw** and **tvm.pmt**) that are used by the Calculator application's finance solver. Financial functions, however, do not store their argument values or results to the TVM variables.

TwoVar X, Y[, [Freq] [, Category, Include]]

Calculates the TwoVar statistics. A summary of results is stored in the *stat.results* variable. (See page 98.)

All the lists must have equal dimension except for Include.

X and Y are lists of independent and dependent variables.

Freq is an optional list of frequency values. Each element in Freq specifies the frequency of occurrence for each corresponding X and Y data point. The default value is 1. All elements must be integers \geq 0.

Category is a list of numeric category codes for the corresponding X and Y data.

Include is a list of one or more of the category codes. Only those data items whose category code is included in this list are included in the calculation.

An empty (void) element in any of the lists *X*, *Freq*, or *Category* results in a void for the corresponding element of all those lists. An empty element in any of the lists *X1* through *X20* results in a void for the corresponding element of all those lists. For more information on empty elements, see page 132.

Output variable	Description
stat.X	Mean of x values
stat.Σx	Sum of x values
stat.Σx2	Sum of x2 values
stat.sx	Sample standard deviation of x
stat.σx	Population standard deviation of x
stat.n	Number of data points
stat. y	Mean of y values
stat.Σy	Sum of y values
stat.Σy ²	Sum of y2 values
stat.sy	Sample standard deviation of y
stat.σy	Population standard deviation of y
stat.Σxy	Sum of x • y values
stat.r	Correlation coefficient
stat.MinX	Minimum of x values
stat.Q ₁ X	1st Quartile of x
stat.MedianX	Median of x
stat.Q ₃ X	3rd Quartile of x
stat.MaxX	Maximum of x values
stat.MinY	Minimum of y values
stat.Q ₁ Y	1st Quartile of y

Output variable	Description
stat.MedY	Median of y
stat.Q ₃ Y	3rd Quartile of y
stat.MaxY	Maximum of y values
stat. $\Sigma(x-\overline{x})^2$	Sum of squares of deviations from the mean of x
stat. $\Sigma(y-\overline{y})^2$	Sum of squares of deviations from the mean of y

unitV()	Catalog > 🚉
unitV(Vector1) ⇒ vector	unitV([1 2 1])
Returns either a row- or column-unit vector, depending on the form of ${\it Vector 1}$.	[0.408248 0.816497 0.408248]
Vector1 must be either a single-row matrix or a single-column matrix.	$ \begin{array}{c c} \hline unitV \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} & \begin{bmatrix} 0.267261 \\ 0.534522 \\ 0.801784 \end{bmatrix} $

unLock		Catalog > [a][2]
unLock Var1[, Var2] [, Var3] unLock Var.	a:=65	65
Unlocks the specified variables or variable group. Locked variables cannot be modified or deleted. See Lock , page 57, and getLockInfo() , page 42.	Lock a	Done
	getLockInfo(a)	1
	a:=75	"Error: Variable is locked."
	DelVar a	"Error: Variable is locked."
	Unlock a	Done
	a:=75	75
	DelVar a	Done

varPop()		Catalog > 🔯
$varPop(List[, freqList]) \Rightarrow expression$	varPop({5,10,15,20,25,30})	72.9167
Returns the population variance of <i>List</i> .	vari op((3,10,13,20,23,30))	72.7107

 ${\sf Each}\, \textit{freqList} \, {\sf element} \, {\sf counts} \, {\sf the} \, {\sf number} \, {\sf of} \, {\sf consecutive} \, {\sf occurrences}$ of the corresponding element in List.

Note: List must contain at least two elements.

If an element in either list is empty (void), that element is ignored, and the corresponding element in the other list is also ignored. For more information on empty elements, see page 132.

varSamp()		Catalog > [2]
varSamp(List[, freqList]) ⇒ expression	varSamp({1,2,5,-6,3,-2})	31

Returns the sample variance of List .

Each *freqList* element counts the number of consecutive occurrences of the corresponding element in *List*.

Note: List must contain at least two elements.

If an element in either list is empty (void), that element is ignored, and the corresponding element in the other list is also ignored. For more information on empty elements, see page 132.

$$varSamp(MatrixI[, freqMatrix]) \Rightarrow matrix$$

Returns a row vector containing the sample variance of each column in *Matrix I*.

Each *freqMatrix* element counts the number of consecutive occurrences of the corresponding element in *Matrix1*.

If an element in either matrix is empty (void), that element is ignored, and the corresponding element in the other matrix is also ignored. For more information on empty elements, see page 132.

Note: Matrix1 must contain at least two rows.

varSamp	1	2	5	\		[4.75]	1.03	4
varSamp	-3	0	1					
١	.5	.7	3	1				
varSamp	-1.1	. 2	2.2	6	3			
varSamp	3.4		5.1	, 2	4			
١	2.3	3 4	1.3	5				
					[3.	91731	2.084	11]

33

Catalog >

varSamp({1,3,5},{4,6,2})

W

warnCodes()

wai iicoues()


warnCodes(Expr1, StatusVar) ⇒ expression

Evaluates expression Expr1, returns the result, and stores the codes of any generated warnings in the Status Var list variable. If no warnings are generated, this function assigns Status Var an empty list.

Expr1 can be any valid TI-NspireTM or TI-NspireTM CAS math expression. You cannot use a command or assignment as Expr1.

Status Var must be a valid variable name.

For a list of warning codes and associated messages, see page 144.

To see the entire result, press \blacktriangle and then use \blacktriangleleft and \blacktriangleright to move the cursor.

when() Catalog > [][2

when (Condition, trueResult [, falseResult][, unknownResult])

⇒ expression

Returns *trueResult*, *falseResult*, or *unknownResult*, depending on whether *Condition* is true, false, or unknown. Returns the input if there are too few arguments to specify the appropriate result.

Omit both falseResult and unknownResult to make an expression defined only in the region where Condition is true.

Use an **undef** *falseResult* to define an expression that graphs only on an interval.

when() is helpful for defining recursive functions.

$$when(x<0,x+3)|x=5$$
 undef

when
$$(n>0, n\cdot factoral(n-1), 1) \rightarrow factoral(n)$$

Done

factoral(3)

6

3!

6

While	Catalog > 📆
-------	-------------

While Condition Block

EndWhile

Executes the statements in Block as long as Condition is true.

Block can be either a single statement or a sequence of statements separated with the ":" character.

Note for entering the example: In the Calculator application on the handheld, you can enter multi-line definitions by pressing \leftarrow

hold down Alt and press Enter.

instead of enter at the end of each line. On the computer keyboard,

Define $sum_of_recip(n)$ =Func

Local i,tempsum

 $1 \rightarrow i$

 $0 \rightarrow tempsum$ While $i \le n$

tempsum+ → tempsum

 $i+1 \rightarrow i$ EndWhile

Return tempsum

Done

true

EndFunc

sum_of_recip(3) 11 6

xor		Catalog > 📳
BooleanExpr1 xor BooleanExpr2 returns Boolean expression		
Roolean List Lyor Roolean List? returns Roolean list	true xor true	false

BooleanList1 xor BooleanList2 returns Boolean list BooleanMatrix1 xor BooleanMatrix2 returns Boolean matrix

Returns true if BooleanExpr1 is true and BooleanExpr2 is false, or vice versa.

Returns false if both arguments are true or if both are false. Returns a simplified Boolean expression if either of the arguments cannot be resolved to true or false.

Note: See or, page 73.

Integer1 xor Integer2 ⇒ integer

Compares two real integers bit-by-bit using an xor operation. Internally, both integers are converted to signed, 64-bit binary numbers. When corresponding bits are compared, the result is 1 if either bit (but not both) is 1; the result is 0 if both bits are 0 or both bits are 1. The returned value represents the bit results, and is displayed according to the Base mode.

You can enter the integers in any number base. For a binary or hexadecimal entry, you must use the 0b or 0h prefix, respectively. Without a prefix, integers are treated as decimal (base 10).

If you enter a decimal integer that is too large for a signed, 64-bit binary form, a symmetric modulo operation is used to bring the value into the appropriate range. For more information, see >Base2, page 12.

Note: See or, page 73.

In Hex base mode:

5>3 xor 3>5

Important: Zero, not the letter ()

importanti zero, not the letter o.		
0h7AC36 xor 0h3D5F	0h79169	
In Bin base mode:		
0b100101 xor 0b100	0b100001	

Note: A binary entry can have up to 64 digits (not counting the Ob prefix). A hexadecimal entry can have up to 16 digits.

zinterval

Catalog > [2]

zInterval o,List[,Freq[,CLevel]]

(Data list input)

zinterval σ, \overline{X}, n [, CLevel]

(Summary stats input)

Computes a z confidence interval. A summary of results is stored in the stat.results variable. (See page 98.)

For information on the effect of empty elements in a list, see "Empty (Void) Elements" on page 132.

Output variable	Description
stat.CLower, stat.CUpper	Confidence interval for an unknown population mean
stat. $\overline{\mathbf{x}}$	Sample mean of the data sequence from the normal random distribution
stat.ME	Margin of error
stat.sx	Sample standard deviation
stat.n	Length of the data sequence with sample mean
stat. σ	Known population standard deviation for data sequence List

zinterval_1Prop

zinterval_1Prop x,n [,CLevel]

Computes a one-proportion z confidence interval. A summary of results is stored in the stat.results variable. (See page 98.)

x is a non-negative integer.

For information on the effect of empty elements in a list, see "Empty (Void) Elements" on page 132.

Output variable	Description	
stat.CLower, stat.CUpper	Confidence interval containing confidence level probability of distribution	
stat. p̂	The calculated proportion of successes	
stat.ME	Margin of error	
stat.n	Number of samples in data sequence	

zinterval_2Prop x1,n1,x2,n2[,CLevel]

Computes a two-proportion z confidence interval. A summary of results is stored in the stat.results variable. (See page 98.)

x1 and x2 are non-negative integers.

For information on the effect of empty elements in a list, see "Empty (Void) Elements" on page 132.

Output variable	Description
stat.CLower, stat.CUpper	Confidence interval containing confidence level probability of distribution
stat. $\hat{\pmb{p}}$ Diff	The calculated difference between proportions
stat.ME	Margin of error
stat. p̂ 1	First sample proportion estimate
stat. p̂ 2	Second sample proportion estimate
stat.n1	Sample size in data sequence one
stat.n2	Sample size in data sequence two

zinterval_2Samp Catalog > 22

(Data list input)

zInterval_2Samp $\sigma_1, \sigma_2, \overline{X}1, n1, \overline{X}2, n2[, CLevel]$

(Summary stats input)

Computes a two-sample z confidence interval. A summary of results is stored in the stat. results variable. (See page 98.)

For information on the effect of empty elements in a list, see "Empty (Void) Elements" on page 132.

Output variable	Description
stat.CLower, stat.CUpper	Confidence interval containing confidence level probability of distribution
stat. $\overline{\mathbf{x}}$ 1- $\overline{\mathbf{x}}$ 2	Sample means of the data sequences from the normal random distribution
stat.ME	Margin of error
stat. $\overline{\mathbf{x}}$ 1, stat. $\overline{\mathbf{x}}$ 2	Sample means of the data sequences from the normal random distribution
stat. σ x1, stat. σ x2	Sample standard deviations for List 1 and List 2
stat.n1, stat.n2	Number of samples in data sequences
stat.r1, stat.r2	Known population standard deviations for data sequence List 1 and List 2

zTest

zTest μ0,σ,List,[Freq[,Hypoth]]

(Data list input)

zTest $\mu 0$, σ , \overline{X} ,n[,Hypoth]

(Summary stats input)

Performs a \boldsymbol{z} test with frequency freqlist. A summary of results is

stored in the stat.results variable. (See page 98.)

Test H_0 : $\mu = \mu 0$, against one of the following:

For H_a : $\mu < \mu 0$, set Hypoth < 0

For H_a: $\mu \neq \mu 0$ (default), set Hypoth=0

For H_a : $\mu > \mu 0$, set Hypoth > 0

For information on the effect of empty elements in a list, see "Empty

(Void) Elements" on page 132.

Output variable	Description
stat.z	$(\overline{\mathbf{x}} - \mu_0) / (\sigma / \operatorname{sqrt}(\mathbf{n}))$
stat.P Value	Least probability at which the null hypothesis can be rejected
$stat.\overline{\mathbf{x}}$	Sample mean of the data sequence in <i>List</i>
stat.sx	Sample standard deviation of the data sequence. Only returned for <i>Data</i> input.
stat.n	Size of the sample

zTest_1Prop

zTest_1Prop p0,x,n[,Hypoth]

Computes a one-proportion z test. A summary of results is stored in the stat.results variable. (See page 98.)

x is a non-negative integer.

Test H_0 : p = p0 against one of the following:

For H_a : p > p0, set Hypoth > 0

For H_a : $p \neq p0$ (default), set Hypoth=0

For H_a : p < p0, set Hypoth < 0

For information on the effect of empty elements in a list, see "Empty

(Void) Elements" on page 132.

Output variable	Description
stat.p0	Hypothesized population proportion
stat.z	Standard normal value computed for the proportion
stat.PVal	Smallest level of significance at which the null hypothesis can be rejected
stat. $\hat{m{p}}$	Estimated sample proportion
stat.n	Size of the sample

zTest_2Prop x1,n1,x2,n2[,Hypoth]

Computes a two-proportion z test. A summary of results is stored in

the stat. results variable. (See page 98.)

x1 and x2 are non-negative integers.

Test H_0 : p1 = p2, against one of the following:

For H_a : p1 > p2, set Hypoth > 0

For H_a : $p1 \neq p2$ (default), set Hypoth=0

For H_a : p < p0, set Hypoth < 0

For information on the effect of empty elements in a list, see "Empty (Void) Elements" on page 132.

Output variable	Description	
stat.z	Standard normal value computed for the difference of proportions	
stat.PVal	Smallest level of significance at which the null hypothesis can be rejected	
stat. p̂ 1	First sample proportion estimate	
stat. p̂ 2	Second sample proportion estimate	
stat. p̂	Pooled sample proportion estimate	
stat.n1, stat.n2	Number of samples taken in trials 1 and 2	

zTest 2Samp

 $zTest_2Samp \sigma_1, \sigma_2$, List1, List2[, Freq1[, Freq2[, Hypoth]]]

(Data list input)

zTest_2Samp $\sigma_1, \sigma_2, \overline{X}1, n1, \overline{X}2, n2[Hypoth]$

(Summary stats input)

Computes a two-sample z test. A summary of results is stored in the

stat.results variable. (See page 98.)

Test H_0 : $\mu 1 = \mu 2$, against one of the following:

For H_a : $\mu 1 < \mu 2$, set Hypoth < 0

For H_a : $\mu 1 \neq \mu 2$ (default), set Hypoth=0

For H_a : $\mu 1 > \mu 2$, Hypoth > 0

For information on the effect of empty elements in a list, see "Empty

(Void) Elements" on page 132.

Output variable	Description	
stat.z	Standard normal value computed for the difference of means	
stat.PVal	Smallest level of significance at which the null hypothesis can be rejected	
$stat.\overline{\mathbf{x}}$ 1, $stat.\overline{\mathbf{x}}$ 2	Sample means of the data sequences in List1 and List2	
stat.sx1, stat.sx2	Sample standard deviations of the data sequences in List1 and List2	
stat.n1, stat.n2	Size of the samples	

Symbols

+ (add)		+ key
Value1 + Value2 ⇒ value	56	56
Returns the sum of the two arguments.	56+4	60
	60+4	64
	64+4	68
	68+4	72
List1 + List2 \Rightarrow list Matrix1 + Matrix2 \Rightarrow matrix Returns a list (or matrix) containing the sums of corresponding elements in List1 and List2 (or Matrix1 and Matrix2). Dimensions of the arguments must be equal.	$\left\{22,\pi,\frac{\pi}{2}\right\}\to 11$	{22,3.14159,1.5708}
	()	{10,5,1.5708}
	$\left\{10,5,\frac{\pi}{2}\right\} \to l2$	(10,5,1.5700)
	11+12	{32,8.14159,3.14159}
$Value + List1 \Rightarrow list$ $List1 + Value \Rightarrow list$	15+{10,15,20}	{25,30,35}
Returns a list containing the sums of <i>Value</i> and each element in <i>List1</i> .	{10,15,20}+15	{25,30,35}
Value + Matrix1 ⇒ matrix Matrix1 + Value ⇒ matrix	20+ 1 2	21 2
Returns a matrix with <i>Value</i> added to each element on the diagonal of <i>Matrix1</i> . <i>Matrix1</i> must be square.	[3 4]	[3 24]
Note: Use .+ (dot plus) to add an expression to each element.		

of Matrix1. Matrix1 must be square.		
Note: Use .+ (dot plus) to add an expression to each element.		
-(subtract)		- key
Value1 − Value2 ⇒ value	6-2	4
Returns Value1 minus Value2.	$\frac{\pi}{\pi - \frac{\pi}{6}}$	2.61799
List $l - List 2 \Rightarrow list$ Matrix $l - Matrix 2 \Rightarrow matrix$ Subtracts each element in List 2 (or Matrix 2) from the corresponding	$\left\{22,\pi,\frac{\pi}{2}\right\} - \left\{10,5,\frac{\pi}{2}\right\}$	{12,-1.85841,0.}
element in <i>List1</i> (or <i>Matrix1</i>), and returns the results.	[3 4]-[1 2]	[2 2]
Dimensions of the arguments must be equal.		
$Value - List1 \implies list$	15-{10,15,20}	{5,0,-5}
$List1 - Value \Rightarrow list$	{10,15,20}-15	{-5,0,5}
Subtracts each <i>List1</i> element from <i>Value</i> or subtracts <i>Value</i> from each <i>List1</i> element, and returns a list of the results.	(10,10,=0)	(3,0,5)

-(subtract) - key Value - Matrix1 ⇒ matrix 20-1219 Matrix1 − Value ⇒ matrix 3 4 -3 16

Value - Matrix1 returns a matrix of Value times the identity matrix minus Matrix1. Matrix1 must be square.

Matrix 1 - Value returns a matrix of Value times the identity matrix

Matrix1 – Value returns a matrix of Value times the identity matrix subtracted from Matrix1. Matrix1 must be square.		
$\label{eq:Note:Use:-} \textbf{Note:} \ \ \textbf{Use} \ \ (\text{dot minus}) \ \ \textbf{to subtract an expression from each element.}$		
· (multiply)		× key
Value1 ·Value2 ⇒ value	2·3.45	6.9
Returns the product of the two arguments.	2 3.43	0.5
$List1 \cdot List2 \Rightarrow list$	[1 22] [456]	[41010]
Returns a list containing the products of the corresponding elements in $List1$ and $List2$.	$\{1.,2,3\}\cdot\{4,5,6\}$	{4,10,18}
Dimensions of the lists must be equal.		
Matrix1 ⋅ Matrix2 ⇒ matrix	[7 9]	[12 48]
Returns the matrix product of <i>Matrix1</i> and <i>Matrix2</i> .	1 2 3 7 8	105 120
The number of columns in ${\it Matrix 1}$ must equal the number of rows in ${\it Matrix 2}$.	4 5 6 7 8	[100 120]
$Value \cdot List1 \Rightarrow list$	$\pi \cdot \{4,5,6\}$	12.5664,15.708,18.8496
List1 • Value \Rightarrow list	π-[4,5,0]	12.3004,13.700,10.0490
Returns a list containing the products of Value and each element in $\mathit{List1}$.		
$Value \cdot Matrix1 \Rightarrow matrix$	[1 2] 0.04	[0.01 0.02]
$Matrix1$ • $Value \Rightarrow matrix$	$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \cdot 0.01$	0.01 0.02
Returns a matrix containing the products of Value and each element in $\mathit{Matrix1}$.	6·identity(3)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Note: Use . • (dot multiply) to multiply an expression by each element.		$\begin{bmatrix} 0 & 6 & 0 \\ 0 & 0 & 6 \end{bmatrix}$

/ (divide)		÷ key
Value1 / Value2 ⇒ value	2	.57971
Returns the quotient of Value 1 divided by Value 2.	3.45	
Note: See also Fraction template, page 1.		
List1 / List2 ⇒ list	{1.,2,3}	[21]
Returns a list containing the quotients of $List1$ divided by $List2$.	{4,5,6}	$\left\{0.25, \frac{2}{5}, \frac{1}{2}\right\}$
Dimensions of the lists must be equal.		
$Value / List1 \Rightarrow list$	6	{2,1,2.44949}
List1 / Value ⇒ list	([)	(2,1,2,11)1)
Returns a list containing the quotients of Value divided by List1	{3,6,√6}	
or List1 divided by Value.	$\{7,9,2\}$	$\left\{ \begin{array}{cc} 1 & 1 & 1 \end{array} \right\}$
	7.9.2	[18 14 63]

118

/ (divide)

÷ key

Value / Matrix1 ⇒ matrix

Matrix1 / Value ⇒ matrix

 $\begin{bmatrix}
 7 & 9 & 2 \\
 \hline
 7 \cdot 9 \cdot 2
 \end{bmatrix}
 \begin{bmatrix}
 1 \\
 \hline
 18
 \end{bmatrix}
 \frac{1}{14}
 \frac{1}{63}$

Returns a matrix containing the quotients of Matrix1/Value.

Note: Use . I (dot divide) to divide an expression by each element.

^ (power)

^ key

 $Value1 \land Value2 \Rightarrow value$

List1 ^ List2 ⇒ list

 $\frac{4^2}{\{2,4,6\}^{\{1,2,3\}}} \qquad \qquad 16$

Returns the first argument raised to the power of the second argument. $% \label{eq:condition}%$

Note: See also Exponent template, page 1.

For a list, returns the elements in List1 raised to the power of the corresponding elements in List2.

In the real domain, fractional powers that have reduced exponents with odd denominators use the real branch versus the principal branch for complex mode.

Value ^ List1 ⇒ list

Returns Value raised to the power of the elements in List1.

List1 ^ Value ⇒ list

Returns the elements in List1 raised to the power of Value.

squareMatrix1 ^ integer ⇒ matrix

Returns squareMatrix1 raised to the integer power.

sauareMatrix1 must be a square matrix.

If integer = -1, computes the inverse matrix.

If integer < -1, computes the inverse matrix to an appropriate positive power.

$\pi^{\{1,2,-3\}}$	{3.14159,9

{3.14159,9.8696,0.032252}

$$\left\{1,2,3,4\right\}^{-2}$$
 $\left\{1,\frac{1}{4},\frac{1}{9},\frac{1}{16}\right\}$

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}^2 \qquad \begin{bmatrix} 7 & 10 \\ 15 & 22 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}^{-1}$$

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}^{-1}$$

$$\begin{bmatrix} -2 & 1 \\ \frac{3}{2} & \frac{-1}{2} \end{bmatrix}$$

$$\begin{bmatrix} 2 \\ 4 \end{bmatrix}^{-2} \qquad \qquad \begin{bmatrix} \frac{11}{2} & \frac{-5}{2} \\ \frac{-15}{4} & \frac{7}{4} \end{bmatrix}$$

x² (square)

x² key

Value 1² ⇒ value

Returns the square of the argument.

 $List 1^2 \Rightarrow list$

Returns a list containing the squares of the elements in List1.

 $squareMatrix 1^2 \Rightarrow matrix$

Returns the matrix square of *squareMatrix1*. This is not the same as calculating the square of each element. Use .^2 to calculate the square of each element.

.+ (dot add) . + kevs Matrix1 .+ Matrix2 ⇒ matrix + 10 30 1 2 11 32 Value .+ Matrix1 ⇒ matrix 3 4 20 40 23 44 Matrix1 .+ Matrix2 returns a matrix that is the sum of each pair of corresponding elements in Matrix1 and Matrix2. 15 35 10 30 Value .+ Matrix1 returns a matrix that is the sum of Value and each 20 40 25 45 element in Matrix 1. .- (dot subt.) Matrix1 - Matrix2 ⇒ matrix 2 10 20 -9 -18 $Value .-Matrix 1 \Rightarrow matrix$ 3 30 40 -27 -36 Matrix1 .- Matrix2 returns a matrix that is the difference between 10 20 -5 -15 each pair of corresponding elements in Matrix1 and Matrix2. 30 40 -25 -35 Value .- Matrix1 returns a matrix that is the difference of Value and each element in Matrix 1. .. (dot mult.) . × kevs

Value . • Matrix1 ⇒ matrix Matrix1 • Matrix2 returns a matrix that is the product of each pair of corresponding elements in Matrix1 and Matrix2. Value . • Matrix1 returns a matrix containing the products of Value and each element in Matrix1.	5 · \[10 \ 20 \] 30 \ 40 \]	[50 100] [50 100] [150 200]
./ (dot divide)		. ÷ keys
$MatrixI$. I $Matrix2 \Rightarrow matrix$ $Value$. I $MatrixI \Rightarrow matrix$ $MatrixI$. I $Matrix2$ returns a matrix that is the quotient of each pair of corresponding elements in $MatrixI$ and $Matrix2$.	$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} / \begin{bmatrix} 10 & 20 \\ 30 & 40 \end{bmatrix}$	$\begin{bmatrix} \frac{1}{10} & \frac{1}{10} \\ \frac{1}{10} & \frac{1}{10} \end{bmatrix}$
Value J Matrix1 returns a matrix that is the quotient of Value and		[10 10]

 $[1 \ 2] [10 \ 20]$

[10 40]

 $\frac{1}{6}$ $\frac{1}{8}$

.^ (dot power)		. ^	keys
Matrix1 .^ Matrix2 \Rightarrow matrix Value .^ Matrix1 \Rightarrow matrix Matrix1 .^ Matrix2 returns a matrix where each element in Matrix2 is the exponent for the corresponding element in Matrix1.	$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \land \begin{bmatrix} 0 & 2 \\ 3 & -1 \end{bmatrix}$	[1 27	$\begin{bmatrix} 4 \\ \frac{1}{4} \end{bmatrix}$
${\it Value}$.^ ${\it Matrix I}$ returns a matrix where each element in ${\it Matrix I}$ is the exponent for ${\it Value}$.	$5 \cdot \begin{bmatrix} 0 & 2 \\ 3 & -1 \end{bmatrix}$	1 125	$\begin{bmatrix} 25 \\ \frac{1}{5} \end{bmatrix}$

Matrix1 . • Matrix2 ⇒ matrix

each element in Matrix1.

120

-(negate) (-) key --Value1 ⇒ value -2.43 -2.43-List1 ⇒ list -Matrix1 ⇒ matrix $\{1.,-0.4,-1.2 \text{E} 19\}$ {-1,0.4,1.2E19} Returns the negation of the argument. In Bin base mode: For a list or matrix, returns all the elements negated. Important: Zero, not the letter O If the argument is a binary or hexadecimal integer, the negation gives the two's complement. 0b100101 ▶ Dec 37 -0b100101 Ans ▶ Dec To see the entire result, press ▲ and then use ◀ and ▶ to move the cursor. ctrl 🕮 keys % (percent) Value1 % ⇒ value List1 % ⇒ list Press Ctrl+Enter ctrl enter (Macintosh®: #+Enter) to Matrix1 % ⇒ matrix evaluate: Returns argument 13% 0.13 100 For a list or matrix, returns a list or matrix with each element divided Press Ctrl+Enter ctrl enter (Macintosh®: #+Enter) to by 100. evaluate: ({1,10,100})% {0.01,0.1,1.}

= (equal)

= key

Expr1 = Expr2 \Rightarrow Boolean expression

List1 = List2 ⇒ Boolean list

Matrix1 = Matrix2 ⇒ Boolean matrix

Returns true if *Expr1* is determined to be equal to *Expr2*.

Returns false if *Expr1* is determined to not be equal to *Expr2*.

Anything else returns a simplified form of the equation.

For lists and matrices, returns comparisons element by element.

Note for entering the example: In the Calculator application on the handheld, you can enter multi-line definitions by pressing

instead of enter at the end of each line. On the computer keyboard,

hold down **Alt** and press **Enter**.

Example function that uses math test symbols: $=, \neq, <, \leq, >, \geq$

Define g(x)=Func

If $x \le -5$ Then

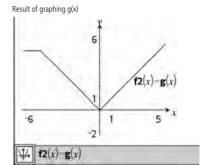
Return 5

ElseIf x > -5 and x < 0 Then

Return -x

ElseIf $x \ge 0$ and $x \ne 10$ Then

Return x


ElseIf x=10 Then

Return 3

EndIf

EndFunc

Done

≠ (not equal)

ctrl = keys

Expr1 ≠ Expr2 ⇒ Boolean expression

List1 ≠ List2 ⇒ Boolean list

Matrix1 ≠ Matrix2 ⇒ Boolean matrix

Returns true if Expr1 is determined to be not equal to Expr2.

Returns false if Expr1 is determined to be equal to Expr2.

Anything else returns a simplified form of the equation.

For lists and matrices, returns comparisons element by element.

Note: You can insert this operator from the keyboard by typing /=

< (less than)

ctrl = kevs

See "=" (equal) example.

See "=" (equal) example.

Expr1 < Expr2 ⇒ Boolean expression

List1 < List2 ⇒ Boolean list

Matrix1 < Matrix2 ⇒ Boolean matrix

Returns true if Expr1 is determined to be less than Expr2.

Returns false if Expr1 is determined to be greater than or equal to Expr2.

Anything else returns a simplified form of the equation.

For lists and matrices, returns comparisons element by element.

≤ (less or equal)

ctrl = keys

 $Expr1 \le Expr2 \implies Boolean expression$

List1 ≤ List2 ⇒ Boolean list

 $Matrix1 \le Matrix2 \implies Boolean matrix$

Returns true if Expr1 is determined to be less than or equal to Expr2.

Returns false if Expr1 is determined to be greater than Expr2.

Anything else returns a simplified form of the equation.

For lists and matrices, returns comparisons element by element,

Note: You can insert this operator from the keyboard by typing <=

> (greater than) ctrl = keys

See "=" (equal) example.

See "=" (equal) example.

See "=" (equal) example.

Expr1 > Expr2 ⇒ Boolean expression

List1 > List2 ⇒ Boolean list

Matrix1 > Matrix2 ⇒ Boolean matrix

Returns true if Expr1 is determined to be greater than Expr2.

Returns false if Expr1 is determined to be less than or equal to Expr2.

Anything else returns a simplified form of the equation.

For lists and matrices, returns comparisons element by element.

≥ (greater or equal) ctrl = keys

Expr1 ≥ Expr2 ⇒ Boolean expression

 $List1 \ge List2 \implies Boolean \ list$

Matrix1 ≥ Matrix2 ⇒ Boolean matrix

Returns true if Expr1 is determined to be greater than or equal to Expr2.

Returns false if Expr1 is determined to be less than Expr2.

Anything else returns a simplified form of the equation.

For lists and matrices, returns comparisons element by element.

Note: You can insert this operator from the keyboard by typing >=

⇒ (logical implication) ctrl = kevs BooleanExpr1 ⇒ BooleanExpr2 returns Boolean expression 5>3 or 3>5 true BooleanList1 ⇒ BooleanList2 returns Boolean list BooleanMatrix1 ⇒ BooleanMatrix2 returns Boolean matrix 5>3 → 3>5 false Integer1 -> Integer2 returns Integer 3 or 4 Evaluates the expression not <argument1> or <argument2> and $3 \Rightarrow 4$ returns true, false, or a simplified form of the equation. For lists and matrices, returns comparisons element by element. 1,2,3 or {3,2,1 3.2.3 Note: You can insert this operator from the keyboard by typing => 1.2.3

\Leftrightarrow (logical double implication, XNOR)

 $BooleanExpr1 \Leftrightarrow BooleanExpr2$ returns Boolean expression $BooleanList1 \Leftrightarrow BooleanList2$ returns Boolean list $BooleanMatrix1 \Leftrightarrow Boolean$ matrix $Integer1 \Leftrightarrow Integer2$ returns Integer

Returns the negation of an **XOR** Boolean operation on the two arguments. Returns true, false, or a simplified form of the equation.

For lists and matrices, returns comparisons element by element.

Note: You can insert this operator from the keyboard by typing <=>

5>3 xor 3>5	true
5>3 ⇔ 3>5	false
3 xor 4	7
3 ⇔ 4	-8
{1,2,3} xor {3,2,1}	{2,0,2}
$\{1,2,3\} \leftrightarrow \{3,2,1\}$	{-3,-1,-3}

ctrl = kevs

ctrl 🕮 keys

Catalog > 23

! (factorial)

 $Value 1! \Rightarrow value$ $List 1! \Rightarrow list$

Matrix1! ⇒ matrix

Returns the factorial of the argument.

For a list or matrix, returns a list or matrix of factorials of the elements.

	?!► key
5!	120
({5,4,3})!	{120,24,6}
$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$!	[1 2] 6 24]

& (append)

String1 & String2 ⇒ string

Returns a text string that is String2 appended to String1.

			-
"Hello	"&"Nick"	"Hello Nick"	,

d() (derivative)

d(Expr1, Var[, Order]) | Var=Value ⇒ value

 $d(Expr1, Var[, Order]) \Rightarrow value$

 $d(List1, Var[, Order]) \Rightarrow list$

d(Matrix1, Var[, Order]) ⇒ matrix

Except when using the first syntax, you must store a numeric value in variable Var before evaluating $\emph{\textbf{d}}(\emph{\textbf{)}}$. Refer to the examples.

d() can be used for calculating first and second order derivative at a point numerically, using auto differentiation methods.

Order, if included, must be=1 or 2. The default is 1.

Note: You can insert this function from the keyboard by typing derivative(...).

Note: See also **First derivative**, page 5 or **Second derivative**, page 5.

Note: The **d()** algorithm has a limitiation: it works recursively through the unsimplified expression, computing the numeric value of the first derivative (and second, if applicable) and the evaluation of each subexpression, which may lead to an unexpected result.

Consider the example on the right. The first derivative of $x\cdot(x^2+x)^{\alpha}(1/3)$ at x=0 is equal to 0. However, because the first derivative of the subexpression $(x^2+x)^{\alpha}(1/3)$ is undefined at x=0, and this value is used to calculate the derivative of the total expression, $\mathbf{d}\mathbf{0}$ reports the result as undefined and displays a warning message.

If you encounter this limitation, verify the solution graphically. You can also try using **centralDiff()**.

$$\frac{d}{dx}(|x|)|x=0$$
 undef

$$x:=0:\frac{d}{dx}(|x|)$$
 undef

$$x:=3:\frac{d}{dx}(\left\{x^2,x^3,x^4\right\})$$
 {6,27,108}

$$\frac{d}{dx} \left(x \cdot \left(x^2 + x \right)^{\frac{1}{3}} \right) |_{x=0}$$
 undef

$$\frac{1}{3} \left(x \cdot (x^2 + x)^{\frac{1}{3}} \right) |_{x=0}$$
centralDiff $\left(x \cdot (x^2 + x)^{\frac{1}{3}} \right) |_{x=0}$

0.000033

() (integral)

Catalog > 13

Catalog > 2

(Expr1, Var, Lower, Upper) ⇒ value

Returns the integral of Expr1 with respect to the variable Var from Lower to Upper. Can be used to calculate the definite integral numerically, using the same method as nInt().

Note: You can insert this function from the keyboard by typing integral(...).

Note: See also nInt(), page 68, and Definite integral template, page 5.

[1	0.333333
$x^2 dx$	
Jo	

$\sqrt{()}$ (square root)

 $\sqrt{\text{(Value I)}} \Rightarrow \text{value}$ $\sqrt{\text{(List1)}} \Rightarrow \text{list}$

Returns the square root of the argument.

For a list, returns the square roots of all the elements in List1.

Note: You can insert this function from the keyboard by typing sgrt(...)

Note: See also Square root template, page 1.

	ctrl x² keys
$\sqrt{4}$	2
$\sqrt{\left\{9,2,4\right\}}$	{3,1.41421,2}

Π () (prodSeq)

 $\Pi(Expr1, Var, Low, High) \Rightarrow expression$

Note: You can insert this function from the keyboard by typing prodSeq(...).

Evaluates Expr1 for each value of Var from Low to High, and returns the product of the results.

Note: See also Product template (Π), page 4.

1 120 n=1

 $\frac{1}{120}$,120,32 n=1

 $\Pi(Expr1, Var, Low, Low-1) \Rightarrow 1$ Π(Expr1, Var, Low, High) \Rightarrow 1/ \prod (Expr1, Var, High+1, Low-1) if High < Low-1

The product formulas used are derived from the following reference:

Ronald L. Graham, Donald E. Knuth, and Oren Patashnik, Concrete Mathematics: A Foundation for Computer Science. Reading, Massachusetts: Addison-Wesley, 1994.

3

1

1 k 1

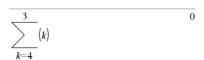
6

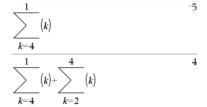
Σ () (sumSeq) Catalog > 2

 Σ (Expr1, Var, Low, High) \Rightarrow expression

Note: You can insert this function from the keyboard by typing sumSeq(...).

Evaluates Expr1 for each value of Var from Low to High, and returns the sum of the results.


Note: See also Sum template, page 4.


$$\Sigma$$
(Expr1, Var, Low, Low-1) \Rightarrow 0
 Σ (Expr1, Var, Low, High)
 $\Rightarrow \neg \Sigma$ (Expr1, Var, High+1, Low-1) if High < Low-1

The summation formulas used are derived from the following reference:

Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. *Concrete Mathematics: A Foundation for Computer Science*. Reading, Massachusetts: Addison-Wesley, 1994.

$$\sum_{n=1}^{5} \left(\frac{1}{n}\right) \qquad \frac{137}{60}$$

Σint() Catalog > [1][2]

 Σ **Int(***NPmt1*, *NPmt2*, *N*, *I*, *PV* ,[*Pmt*], [*FV*], [*PpY*], [*CpY*], [*PmtAt*], [*roundValue*]) \Rightarrow *value*

 Σ Int(NPmt1,NPmt2,amortTable) \Rightarrow value

Amortization function that calculates the sum of the interest during a specified range of payments.

NPmtI and NPmt2 define the start and end boundaries of the payment range.

N, I, PV, Pmt, FV, PpY, CpY, and PmtAt are described in the table of TVM arguments, page 108.

- If you omit Pmt, it defaults to Pmt=tvmPmt(N,I,PV,FV,PpY,CpY,PmtAt).
- If you omit FV, it defaults to FV=0.
- The defaults for PpY, CpY, and PmtAt are the same as for the TVM functions.

roundValue specifies the number of decimal places for rounding. Default=2.

\(\Sigma\) Int(\(NPmt1, NPmt2, amortTable\) calculates the sum of the interest based on amortization table *amortTable*. The *amortTable* argument must be a matrix in the form described under **amortTbl()**, page 6.

Note: See also Σ **Prn()**, below, and **Bal()**, page 12.

tbl:=amortTbl(12,12,4.75,20000,,12,12)

20000. 0 0 0 1 -77.49 -1632.43 18367.6 2 -71.17 -1638.75 16728.8 3 -64.82-1645.115083.7 -58.44 -1651.48 13432.2 5 -52.05 -1657.8711774.4 6 -45.62-1664.310110.1 7 -39.17 -1670.75 8439.32 8 -32.7-1677.226762.1 -26.2-1683.72 5078.38 -19.68-1690.243388.14 -13.13 -1696.791691.35 11 12 -6.55-1703.37-12.02

 $\Sigma \operatorname{Int}(1,3,tbl)$ -213.48

ΣPrn()	Catalog > 🕎
--------	-------------

 Σ Prn(NPmt1, NPmt2, N, I, PV, [Pmt], [FV], [PpY], [CpY], [PmtAt], [roundValue]) \Rightarrow value

 Σ Prn(NPmt1,NPmt2,amortTable) \Rightarrow value

Amortization function that calculates the sum of the principal during a specified range of payments.

NPmt1 and *NPmt2* define the start and end boundaries of the payment range.

N, I, PV, Pmt, FV, PpY, CpY, and PmtAt are described in the table of TVM arguments, page 108.

- If you omit Pmt, it defaults to Pmt=tvmPmt(N,I,PV,FV,PpY,CpY,PmtAt).
- If you omit FV, it defaults to FV=0.
- The defaults for PpY, CpY, and PmtAt are the same as for the TVM functions.

roundValue specifies the number of decimal places for rounding. Default=2.

ΣPrn(NPmt1,NPmt2,amortTable) calculates the sum of the principal paid based on amortization table amortTable. The amortTable argument must be a matrix in the form described under amortTbl(), page 6.

Note: See also Σ **Int()**, above, and **Bal()**, page 12.

ΣPrn(1,3,12,4.75,20000,,12,12)	-4916.28
--------------------------------	----------

tbl:=amortTbl(12,12,4.75,20000,,12,12)

г			-
0	0.	0.	20000.
1	-77.49	-1632.43	18367.57
2	-71.17	-1638.75	16728.82
3	-64.82	$^{-}1645.1$	15083.72
4	-58.44	-1651.48	13432.24
5	-52.05	-1657.87	11774.37
6	-45.62	-1664.3	10110.07
7	-39.17	-1670.75	8439.32
8	-32.7	-1677.22	6762.1
9	-26.2	-1683.72	5078.38
10	-19.68	-1690.24	3388.14
11	-13.13	-1696.79	1691.35
12	-6.55	-1703.37	-12.02

ctri 🕮 kevs

EE Iran

 $\Sigma Prn(1,3,tbl)$ -4916.28

(indirection)

varNameString

Refers to the variable whose name is *varNameString*. This lets you use strings to create variable names from within a function.

xyz:=12	12
#("x"&"y"&"z")	12

Creates or refers to the variable xyz .

$10 \rightarrow r$	10
"r" → s1	"r"
#s1	10

Returns the value of the variable (r) whose name is stored in variable s1.

E (scientific notation)

mantissa**E**exponent

Enters a number in scientific notation. The number is interpreted as $mantissa \times 10^{exponent}$.

Hint: If you want to enter a power of 10 without causing a decimal value result, use $10^{\wedge}integer$.

Note: You can insert this operator from the computer keyboard by typing @E. for example, type 2.3@E4 to enter 2.3E4.

	ш кеу
23000.	23000.
2300000000.+4.1E15	4.1 E 15
3·10 ⁴	30000

^g (gradian)

Expr19 ⇒ expression

List1⁹ ⇒ list

Matrix19 ⇒ matrix

This function gives you a way to specify a gradian angle while in the Degree or Radian mode.

In Radian angle mode, multiplies Expr1 by $\pi/200$.

In Degree angle mode, multiplies Expr1 by g/100.

In Gradian mode, returns Expr1 unchanged.

Note: You can insert this symbol from the computer keyboard by typing @g.

In Degree, Gradian or Radian mode:

cos(50 ⁹)	0.707107
cos({0,100g,200g})	{1.,0.,-1.}

π• kev

π. keν

π• keν

ctrl 🕮 kevs

25.2215

51

2

r(radian)

 $Value I^{\mathsf{r}} \Rightarrow value$ $I : \mathsf{st} I^{\mathsf{r}} \Rightarrow I : \mathsf{st}$

 $Matrix l^{\mathsf{r}} \Rightarrow matrix$

This function gives you a way to specify a radian angle while in Degree or Gradian mode.

In Degree angle mode, multiplies the argument by $180/\pi$.

In Radian angle mode, returns the argument unchanged.

In Gradian mode, multiplies the argument by $200/\pi$.

Hint: Use ^r if you want to force radians in a function definition regardless of the mode that prevails when the function is used.

Note: You can insert this symbol from the computer keyboard by typing @r.

In Degree, Gradian or Radian angle mode:

 $\cos\left(\frac{\pi}{4^r}\right) \qquad \qquad 0.707107$

 $\frac{1.000 \left\{ 0^{r}, \left(\frac{\pi}{12}\right)^{r}, (\pi)^{r} \right\} }{\cos \left\{ 1.00965926, 1.000 \right\}}$

° (degree)

Value1° ⇒ value

 $List1^{\circ} \Rightarrow list$ $Matrix1^{\circ} \Rightarrow matrix$

This function gives you a w

This function gives you a way to specify a degree angle while in Gradian or Radian mode.

In Radian angle mode, multiplies the argument by $\pi/180$.

In Degree angle mode, returns the argument unchanged.

In Gradian angle mode, multiplies the argument by 10/9.

Note: You can insert this symbol from the computer keyboard by typing @d.

In Degree, Gradian or Radian angle mode:

 $\cos(45^{\circ})$ 0.707107

In Radian angle mode:

In Degree angle mode:

25°13'17.5"

25°30'

 $\cos\left\{\left\{0, \frac{\pi}{4}, 90^{\circ}, 30.12^{\circ}\right\}\right\}$ $\left\{1, 0.707107, 0, 0.864976\right\}$

°, ', '' (degree/minute/second)

dd°mm'ss.ss" ⇒ expression

dd A positive or negative number

mm A non-negative number

ss.ss A non-negative number

Returns dd+(mm/60)+(ss.ss/3600).

This base-60 entry format lets you:

- Enter an angle in degrees/minutes/seconds without regard to the current angle mode.
- Enter time as hours/minutes/seconds.

Note: Follow ss.ss with two apostrophes ("), not a quote symbol (").

∠ (angle)

ctrl 🕮 kevs

 $[Radius, \angle \theta_Angle] \Rightarrow vector$ (polar input)

 $[Radius, \angle \theta_Angle, Z_Coordinate] \implies vector$ (cylindrical input)

 $[Radius, \angle \theta_Angle, \angle \theta_Angle] \Rightarrow vector$ (spherical input)

Returns coordinates as a vector depending on the Vector Format mode setting: rectangular, cylindrical, or spherical.

Note: You can insert this symbol from the computer keyboard by

cylindrical

rectangular

[5 ∠60° ∠45°] $3.53553 \ \angle 1.0472 \ 3.53553$

1.76777 3.06186 3.53553

In Radian mode and vector format set to:

∠60° ∠45°]

spherical

In Radian angle mode and Rectangular complex format:

$$5+3 \cdot i - \left(10 \angle \frac{\pi}{4}\right)$$
 $-2.07107 - 4.07107 \cdot i$

(Magnitude ∠ Angle) ⇒ complexValue (polar input)

Enters a complex value in $(r \angle \theta)$ polar form. The Angle is interpreted according to the current Angle mode setting.

(underscore as an empty element)

See "Empty (Void) Elements", page 132.

10^()

Catalog > 23

10^ (Value1) ⇒ value

10^ (List1) ⇒ list

Returns 10 raised to the power of the argument.

For a list, returns 10 raised to the power of the elements in List1.

10^(squareMatrixI**)** ⇒ squareMatrix

Returns 10 raised to the power of squareMatrix1. This is not the same as calculating 10 raised to the power of each element. For information about the calculation method, refer to cos().

sauareMatrix1 must be diagonalizable. The result always contains floating-point numbers.

 $10^{1.5}$

31.6228

$$\begin{bmatrix}
1 & 5 & 3 \\
4 & 2 & 1 \\
6 & -2 & 1
\end{bmatrix}$$

1.14336E7 8.17155E6 6.67589E6 9.95651E6 7.11587E6 5.81342E6 7.65298E6 5.46952E6 4.46845E6

^-1(reciprocal)

Catalog > 2

Value1 ^-1 ⇒ value List1 ^{1−1} ⇒ list

 $(3.1)^{-1}$

0.322581

Returns the reciprocal of the argument.

For a list, returns the reciprocals of the elements in List1.

squareMatrix1 ^{∧-1} ⇒ squareMatrix

Returns the inverse of squareMatrix1.

squareMatrix1 must be a non-singular square matrix.

 $[1 \ 2]^{-1}$

1 2

| (constraint operator)

 $\textit{Expr} \mid \textit{BooleanExpr1} \ [\textbf{and} \ \textit{BooleanExpr2}]...$

Expr | BooleanExpr1 [or BooleanExpr2]...

The constraint ("|") symbol serves as a binary operator. The operand

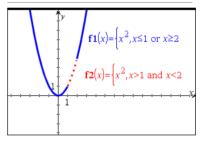
The constraint ("|") symbol serves as a binary operator. The operand to the left of | is an expression. The operand to the right of | specifies one or more relations that are intended to affect the simplification of the expression. Multiple relations after | must be joined by logical "and" or "or" operators.

The constraint operator provides three basic types of functionality:

- Substitutions
- Interval constraints
- Exclusions

Substitutions are in the form of an equality, such as x=3 or $y=\sin(x)$. To be most effective, the left side should be a simple variable. $Expr \mid Variable = value$ will substitute value for every occurrence of Variable = value will substitute Value = value for every occurrence of Variable = value will substitute Value = value for every occurrence of Variable = value for every occurrence of Variable = value for every occurrence of Variable = value for every occurrence of Value = value for every occurrence o

Interval constraints take the form of one or more inequalities joined by logical "and" or "or" operators. Interval constraints also permit simplification that otherwise might be invalid or not computable.


$$x+1|x=3$$
 4
 $x+55|x=\sin(55)$ 54.0002

ctri 🕮 keys

$\overline{x^3 - 2 \cdot x + 7 \rightarrow f(x)}$	Done
$f(x) x=\sqrt{3}$	8.73205

$$nSolve(x^3+2\cdot x^2-15\cdot x=0,x) \qquad 0.$$

$$nSolve(x^3+2\cdot x^2-15\cdot x=0,x)|x>0 \text{ and } x<5$$
 3.

Exclusions use the "not equals" (I= or \neq) relational operator to exclude a specific value from consideration.

→ (store)

 $Value \rightarrow Var$ $List \rightarrow Var$

Matrix → Var

Expr → Function(Param1,...)

List → Function(Param1,...)

 $Matrix \rightarrow Function(Param1,...)$

If the variable Var does not exist, creates it and initializes it to Value, List. or Matrix.

If the variable Var already exists and is not locked or protected, replaces its contents with Value, List, or Matrix.

Note: You can insert this operator from the keyboard by typing =: as a shortcut. For example, type pi/4 =: myvar.

$\frac{\pi}{4} \rightarrow myvar$	0.785398
$\frac{1}{2 \cdot \cos(x) \to y I(x)}$	Done
$\{1,2,3,4\} \rightarrow lst5$	{1,2,3,4}
$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \rightarrow matg$	$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$
"Hello" → str1	"Hello"

ctrl var key

:= (assign)		ctri [∞i{a keys
Var := Value Var := List Var := Matrix Function(Paraml,) := Expr	$myvar:=\frac{\pi}{4}$.785398
Function(Param1,) := List Function(Param1,) := Matrix	$yI(x):=2\cdot\cos(x)$	Done
If variable <i>Var</i> does not exist, creates <i>Var</i> and initializes it to <i>Value</i> ,	lst5:={1,2,3,4}	{1,2,3,4}
List, or Matrix. If Var already exists and is not locked or protected, replaces its contents with Value, List, or Matrix.	$matg:=\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$	$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$
	str1:="Hello"	"Hello"

© (comment)	ctrl 🕮 keys
 processes text as a comment line, allowing you to annotate functions and programs that you create. can be at the beginning or anywhere in the line. Everything to the right of ⊚, to the end of the line, is the comment. Note for entering the example: In the Calculator application on the handheld, you can enter multi-line definitions by pressing → instead of enter at the end of each line. On the computer keyboard, hold down Alt and press Enter. 	Define $g(n)$ =Func © Declare variables Local i,result result:=0 For i,1,n,1 ©Loop n times result:=result+i ² EndFor Return result EndFunc
	Done
	g(3) 14

0b, 0h		0B keys, 0H keys
0b binaryNumber	In Dec base mode:	
Oh hexadecimalNumber	0b10+0hF+10	27
Denotes a binary or hexadecimal number, respectively. To enter a binary or hex number, you must enter the 0b or 0h prefix regardless of the Base mode. Without a prefix, a number is treated as decimal	In Bin base mode:	
(base 10).	0b10+0hF+10	0b11011
Results are displayed according to the Base mode.		
	In Hex base mode:	
	0b10+0hF+10	0h1B

Empty (Void) Elements

When analyzing real-world data, you might not always have a complete data set. TI-Nspire™ Software allows empty, or void, data elements so you can proceed with the nearly complete data rather than having to start over or discard the incomplete cases.

You can find an example of data involving empty elements in the Lists & Spreadsheet chapter, under "Graphing spreadsheet data."

The delVoid() function lets you remove empty elements from a list. The isVoid() function lets you test for an empty element. For details, see delVoid(), page 29, and isVoid(), page 49.

Note: To enter an empty element manually in a math expression, type "_" or the keyword void. The keyword void is automatically converted to a "_" symbol when the expression is evaluated. To type "_" on the handheld, press [str] ___.

Calculations involving void elements

The majority of calculations involving a void input will produce a void result. See special cases below.

	_
gcd(100,_)	_
3+_	-
{5,_,10}-{3,6,9}	{2,_,1}

List arguments containing void elements

The following functions and commands ignore (skip) void elements found in list arguments.

count, countif, cumulativeSum, freqTable>list, frequency, max, mean, median, product, stDevPop, stDevSamp, sum, sumlf, varPop, and varSamp, as well as regression calculations, OneVar, TwoVar, and FiveNumSummary statistics, confidence intervals. and stat tests

sum({2,_,3,5,6.6})	16.6
median({1,2,_,_,3})	2
cumulativeSum({1,2,_	,4,5}) {1,3,_,7,12}
cumulativeSum $\begin{bmatrix} 1 & 2 \\ 3 & - \\ 5 & 6 \end{bmatrix}$	$\begin{bmatrix} 1 & 2 \\ 4 & - \\ 9 & 8 \end{bmatrix}$

SortA and **SortD** move all void elements within the first argument to the bottom.

$\{5,4,3,_,1\} \rightarrow list1$	{5,4,3,_,1}
$\{5,4,3,2,1\} \rightarrow list2$	{5,4,3,2,1}
SortA list1,list2	Done
list1	{1,3,4,5,_}
list2	{1,3,4,5,2}
$\{1,2,3,_,5\} \rightarrow list1$	{1,2,3,_,5}
$\{1,2,3,4,5\} \rightarrow list2$	{1,2,3,4,5}
SortD list1,list2	Done
list1	{5,3,2,1,_}
list2	{5,3,2,1,4}

List arguments containing void elements(continued)

In regressions, a void in an X or Y list introduces a void for the corresponding element of the residual.

l1:={1,2,3,4,5}: l2:={2,_,3,5,6.6}	}
	{2,_,3,5,6.6}
LinRegMx 11,12	Done
stat.Resid	
{0.434286,_,-0.862857,	-0.011429,0.44}
stat.XReg	{1.,_,3.,4.,5.}
stat.YReg	{2.,_,3.,5.,6.6}
stat.FreqReg	{1.,_,1.,1.,1.}

An omitted category in regressions introduces a void for the corresponding element of the residual.

<i>11</i> :={ 1,3,4,5 }: <i>12</i> :={ 2,3,5,6.6 }	{ 2,3,5,6.6 }
cat:={ "M", "M", "F", "F" }: incl:=	={ "F" }
	{"F"}
LinRegMx 11,12,1,cat,incl	Done
stat.Resid	{_,_,0.,0.}
stat.XReg	{_,_,4.,5.}
stat.YReg	{_,_,5.,6.6}
stat.FreqReg	{_,_,1.,1.}

A frequency of 0 in regressions introduces a void for the corresponding element of the residual.

11:={1,3,4,5}:	12:={2,3,5,6.6}	{2,3,5,6.6}
LinRegMx 11,12	2,{1,0,1,1}	Done
stat.Resid	{0.069231,_,-0.27	6923,0.207692}
stat.XReg		{1.,_,4.,5.}
stat.YReg		{2.,_,5.,6.6}
stat.FreqReg		{1.,_,1.,1.}

Shortcuts for Entering Math Expressions

Shortcuts let you enter elements of math expressions by typing instead of using the Catalog or Symbol Palette. For example, to enter the expression $\sqrt{6}$, you can type $\mathtt{sqrt}(6)$ on the entry line. When you press $\boxed{\mathtt{enter}}$, the expression $\mathtt{sqrt}(6)$ is changed to $\sqrt{6}$. Some shortcuts are useful from both the handheld and the computer keyboard. Others are useful primarily from the computer keyboard.

From the Handheld or Computer Keyboard

To enter this:	Type this shortcut:
π	pi
θ	theta
∞	infinity
≤	<=
2	>=
≠	/=
⇒ (logical implication)	=>
⇔ (logical double implication, XNOR)	<=>
→ (store operator)	=:
(absolute value)	abs()
$\sqrt{0}$	sqrt()
Σ() (Sum template)	sumSeq()
Π() (Product template)	prodSeq()
sin ⁻¹ (), cos ⁻¹ (),	arcsin(), arccos(),
ΔList()	deltaList()

From the Computer Keyboard

To enter this:	Type this shortcut:
i (imaginary constant)	@i
e (natural log base e)	@e
E (scientific notation)	@E
T (transpose)	@t
r (radians)	@r
° (degrees)	@d

To enter this:	Type this shortcut:
g (gradians)	@g
∠ (angle)	@<
▶ (conversion)	@>
Decimal, DeproxFraction(), and @>Decimal, @>approxFraction(), and so on.	

EOS™ (Equation Operating System) Hierarchy

This section describes the Equation Operating System (EOS™) that is used by the TI-Nspire™ math and science learning technology. Numbers, variables, and functions are entered in a simple, straightforward sequence. EOS™ software evaluates expressions and equations using parenthetical grouping and according to the priorities described below.

Order of Evaluation

Level	Operator
1	Parentheses (), brackets [], braces { }
2	Indirection (#)
3	Function calls
4	Post operators: degrees-minutes-seconds (°,',"), factorial (!), percentage (%), radian ($^{\Gamma}$), subscript ([]), transpose (T)
5	Exponentiation, power operator (^)
6	Negation (¯)
7	String concatenation (&)
8	Multiplication (*), division (/)
9	Addition (+), subtraction (-)
10	Equality relations: equal (=), not equal (\neq or /=), less than (<), less than or equal (\leq or <=), greater than (>), greater than or equal (\geq or >=)
11	Logical not
12	Logical and
13	Logical or
14	xor, nor, nand
15	Logical implication (⇒)
16	Logical double implication, XNOR (\Leftrightarrow)
17	Constraint operator (" ")
18	Store (→)

Parentheses, Brackets, and Braces

All calculations inside a pair of parentheses, brackets, or braces are evaluated first. For example, in the expression 4(1+2), EOSTM software first evaluates the portion of the expression inside the parentheses, 1+2, and then multiplies the result, 3, by 4.

The number of opening and closing parentheses, brackets, and braces must be the same within an expression or equation. If not, an error message is displayed that indicates the missing element. For example, (1+2)/(3+4 will display the error message "Missing)."

Note: Because the TI-NspireTM software allows you to define your own functions, a variable name followed by an expression in parentheses is considered a "function call" instead of implied multiplication. For example a(b+c) is the function a evaluated by b+c. To multiply the expression b+c by the variable a, use explicit multiplication: a*(b+c).

Indirection

The indirection operator (#) converts a string to a variable or function name. For example, #("x"&"y"&"z") creates the variable name xyz. Indirection also allows the creation and modification of variables from inside a program. For example, if $10 \rightarrow r$ and $"r" \rightarrow s1$, then #s1=10.

Post Operators

Post operators are operators that come directly after an argument, such as 5!, 25%, or 60°15' 45". Arguments followed by a post operator are evaluated at the fourth priority level. For example, in the expression 4^3!, 3! is evaluated first. The result, 6, then becomes the exponent of 4 to yield 4096.

Exponentiation

Exponentiation (^) and element-by-element exponentiation (.^) are evaluated from right to left. For example, the expression 2^3^2 is evaluated the same as 2^(3^2) to produce 512. This is different from (2^3)^2, which is 64.

Negation

To enter a negative number, press \bigcirc followed by the number. Post operations and exponentiation are performed before negation. For example, the result of $-x^2$ is a negative number, and $-9^2 = -81$. Use parentheses to square a negative number such as $(-9)^2$ to produce 81.

Constraint ("|")

The argument following the constraint ("|") operator provides a set of constraints that affect the evaluation of the argument preceding the operator.

Error Codes and Messages

When an error occurs, its code is assigned to variable *errCode*. User-defined programs and functions can examine *errCode* to determine the cause of an error. For an example of using *errCode*, See Example 2 under the Try command, page 106.

Note: Some error conditions apply only to TI-NspireTM CAS products, and some apply only to TI-NspireTM products.

Error code	Description
10	A function did not return a value
20	A test did not resolve to TRUE or FALSE. Generally, undefined variables cannot be compared. For example, the test If a b is undefined when the If statement is executed.
30	Argument cannot be a folder name.
40	Argument error
50	Argument mismatch Two or more arguments must be of the same type.
60	Argument must be a Boolean expression or integer
70	Argument must be a decimal number
90	Argument must be a list
100	Argument must be a matrix
130	Argument must be a string
140	Argument must be a variable name. Make sure that the name: does not begin with a digit does not contain spaces or special characters does not use underscore or period in invalid manner does not exceed the length limitations See the Calculator section in the documentation for more details.
160	Argument must be an expression
165	Batteries too low for sending or receiving Install new batteries before sending or receiving.
170	Bound The lower bound must be less than the upper bound to define the search interval.
180	Break The esc or for was pressed during a long calculation or during program execution.
190	Circular definition This message is displayed to avoid running out of memory during infinite replacement of variable values during simplification. For example, a+1->a, where a is an undefined variable, will cause this error.
200	Constraint expression invalid For example, solve $(3x^2-4=0,x) \mid x<0 \text{ or } x>5 would produce this error message because the constraint is separated by "or" instead of "and."$
210	Invalid Data type An argument is of the wrong data type.
220	Dependent limit

Error code	Description
230	Dimension A list or matrix index is not valid. For example, if the list {1,2,3,4} is stored in L1, then L1[5] is a dimension error because L1 only contains four elements.
235	Dimension Error. Not enough elements in the lists.
240	Dimension mismatch Two or more arguments must be of the same dimension. For example, [1,2]+[1,2,3] is a dimension mismatch because the matrices contain a different number of elements.
250	Divide by zero
260	Domain error An argument must be in a specified domain. For example, rand(0) is not valid.
270	Duplicate variable name
280	Else and Elself invalid outside of IfEndIf block
290	EndTry is missing the matching Else statement
295	Excessive iteration
300	Expected 2 or 3-element list or matrix
310	The first argument of nSolve must be an equation in a single variable. It cannot contain a non-valued variable other than the variable of interest.
320	First argument of solve or cSolve must be an equation or inequality For example, solve(3x^2-4,x) is invalid because the first argument is not an equation.
345	Inconsistent units
350	Index out of range
360	Indirection string is not a valid variable name
380	Undefined Ans Either the previous calculation did not create Ans, or no previous calculation was entered.
390	Invalid assignment
400	Invalid assignment value
410	Invalid command
430	Invalid for the current mode settings
435	Invalid guess
440	Invalid implied multiply For example, $x(x+1)$ is invalid; whereas, $x^*(x+1)$ is the correct syntax. This is to avoid confusion between implied multiplication and function calls.
450	Invalid in a function or current expression Only certain commands are valid in a user-defined function.
490	Invalid in TryEndTry block
510	Invalid list or matrix
550	Invalid outside function or program A number of commands are not valid outside a function or program. For example, Local cannot be used unless it is in a function or program.
560	Invalid outside LoopEndLoop, ForEndFor, or WhileEndWhile blocks For example, the Exit command is valid only inside these loop blocks.
565	Invalid outside program

Error code	Description
570	Invalid pathname For example, War is invalid.
575	Invalid polar complex
580	Invalid program reference Programs cannot be referenced within functions or expressions such as 1+p(x) where p is a program.
600	Invalid table
605	Invalid use of units
610	Invalid variable name in a Local statement
620	Invalid variable or function name
630	Invalid variable reference
640	Invalid vector syntax
650	Link transmission A transmission between two units was not completed. Verify that the connecting cable is connected firmly to both ends.
665	Matrix not diagonalizable
670	Low Memory 1. Delete some data in this document 2. Save and close this document If 1 and 2 fail, pull out and re-insert batteries
672	Resource exhaustion
673	Resource exhaustion
680	Missing (
690	Missing)
700	Missing "
710	Missing]
720	Missing }
730	Missing start or end of block syntax
740	Missing Then in the IfEndIf block
750	Name is not a function or program
765	No functions selected
780	No solution found
800	Non-real result For example, if the software is in the Real setting, $\sqrt{(-1)}$ is invalid. To allow complex results, change the "Real or Complex" Mode Setting to RECTANGULAR or POLAR.
830	Overflow
850	Program not found A program reference inside another program could not be found in the provided path during execution.
855	Rand type functions not allowed in graphing
860	Recursion too deep

Error code	Description
870	Reserved name or system variable
900	Argument error Median-median model could not be applied to data set.
910	Syntax error
920	Text not found
930	Too few arguments The function or command is missing one or more arguments.
940	Too many arguments The expression or equation contains an excessive number of arguments and cannot be evaluated.
950	Too many subscripts
955	Too many undefined variables
960	Variable is not defined No value is assigned to variable. Use one of the following commands: ■ sto → ■ := ■ Define to assign values to variables.
965	Unlicensed OS
970	Variable in use so references or changes are not allowed
980	Variable is protected
990	Invalid variable name Make sure that the name does not exceed the length limitations
1000	Window variables domain
1010	Zoom
1020	Internal error
1030	Protected memory violation
1040	Unsupported function. This function requires Computer Algebra System. Try TI-Nspire™ CAS.
1045	Unsupported operator. This operator requires Computer Algebra System. Try TI-Nspire™ CAS.
1050	Unsupported feature. This operator requires Computer Algebra System. Try TI-Nspire™ CAS.
1060	Input argument must be numeric. Only inputs containing numeric values are allowed.
1070	Trig function argument too big for accurate reduction
1080	Unsupported use of Ans.This application does not support Ans.
1090	Function is not defined. Use one of the following commands: • Define • := • sto → to define a function.
1100	Non-real calculation For example, if the software is in the Real setting, $\sqrt{(-1)}$ is invalid. To allow complex results, change the "Real or Complex" Mode Setting to RECTANGULAR or POLAR.
1110	Invalid bounds
1120	No sign change

Error code	Description
1130	Argument cannot be a list or matrix
1140	Argument error The first argument must be a polynomial expression in the second argument. If the second argument is omitted, the software attempts to select a default.
1150	Argument error The first two arguments must be polynomial expressions in the third argument. If the third argument is omitted, the software attempts to select a default.
1160	Invalid library pathname A pathname must be in the form xxx\yyy, where: The xxx part can have 1 to 16 characters. The yyy part can have 1 to 15 characters. See the Library section in the documentation for more details.
1170	Invalid use of library pathname A value cannot be assigned to a pathname using Define , :=, or sto →. A pathname cannot be declared as a Local variable or be used as a parameter in a function or program definition.
1180	Invalid library variable name. Make sure that the name: Does not contain a period Does not begin with an underscore Does not exceed 15 characters See the Library section in the documentation for more details.
1190	Library document not found: Verify library is in the MyLib folder. Refresh Libraries. See the Library section in the documentation for more details.
1200	Library variable not found: Verify library variable exists in the first problem in the library. Make sure library variable has been defined as LibPub or LibPriv. Refresh Libraries. See the Library section in the documentation for more details.
1210	Invalid library shortcut name. Make sure that the name: Does not contain a period Does not begin with an underscore Does not exceed 16 characters Is not a reserved name See the Library section in the documentation for more details.
1220	Domain error: The tangentLine and normalLine functions support real-valued functions only.
1230	Domain error. Trigonometric conversion operators are not supported in Degree or Gradian angle modes.
1250	Argument Error Use a system of linear equations. Example of a system of two linear equations with variables x and y: 3x+7y=5 2y-5x=-1
1260	Argument Error: The first argument of nfMin or nfMax must be an expression in a single variable. It cannot contain a non-valued variable other than the variable of interest.
1270	Argument Error Order of the derivative must be equal to 1 or 2.
1280	Argument Error Use a polynomial in expanded form in one variable.

Error code	Description
1290	Argument Error Use a polynomial in one variable.
1300	Argument Error The coefficients of the polynomial must evaluate to numeric values.
1310	Argument error: A function could not be evaluated for one or more of its arguments.
1380	Argument error: Nested calls to domain() function are not allowed.

Warning Codes and Messages

You can use the **warnCodes()** function to store the codes of warnings generated by evaluating an expression. This table lists each numeric warning code and its associated message. For an example of storing warning codes, see **warnCodes()**, page <u>111</u>.

Warning code	Message
10000	Operation might introduce false solutions.
10001	Differentiating an equation may produce a false equation.
10002	Questionable solution
10003	Questionable accuracy
10004	Operation might lose solutions.
10005	cSolve might specify more zeros.
10006	Solve may specify more zeros.
10007	More solutions may exist. Try specifying appropriate lower and upper bounds and/or a guess. Examples using solve(): solve(Equation, Var=Guess) lowBound <var<upbound solve(equation,="" var="Guess)</td" var) lowbound<var<upbound=""></var<upbound>
10008	Domain of the result might be smaller than the domain of the input.
10009	Domain of the result might be larger than the domain of the input.
10012	Non-real calculation
10013	∞^0 or undef^0 replaced by 1
10014	undef^0 replaced by 1
10015	1^∞ or 1^undef replaced by 1
10016	1^undef replaced by 1
10017	Overflow replaced by ∞ or ¬∞
10018	Operation requires and returns 64 bit value.
10019	Resource exhaustion, simplification might be incomplete.
10020	Trig function argument too big for accurate reduction.
10021	Input contains an undefined parameter. Result might not be valid for all possible parameter values.
10022	Specifying appropriate lower and upper bounds might produce a solution.
10023	Scalar has been multiplied by the identity matrix.
10024	Result obtained using approximate arithmetic.
10025	Equivalence cannot be verified in EXACT mode.
10026	Constraint might be ignored. Specify constraint in the form "\" 'Variable MathTestSymbol Constant' or a conjunct of these forms, for example 'x<3 and x>-12'

Service and Support

Texas Instruments Support and Service

For U.S. and Canada:

For General Information

Home Page: <u>education.ti.com</u>

KnowledgeBase and education.ti.com/support

e-mail inquiries:

Phone: (800) TI-CARES / (800) 842-2737

For U.S., Canada, Mexico, Puerto Rico, and

Virgin Islands only

International education.ti.com/international

information:

For Technical Support

KnowledgeBase and education.ti.com/support

support by e-mail:

Phone (972) 917-8324

(not toll-free):

For Product (Hardware) Service

Customers in the U.S., Canada, Mexico, Puerto Rico and Virgin Islands: Always contact Texas Instruments Customer Support before returning a product for service.

For All Other Countries:

For general information

For more information about TI products and services, contact TI by e-mail or visit the TI Internet address.

E-mail inquiries: <u>ti-cares@ti.com</u>

Home Page: <u>education.ti.com</u>

Service and Warranty Information

For information about the length and terms of the warranty or about product service, refer to the warranty statement enclosed with this product or contact your local Texas Instruments retailer/distributor.

Index

Symbols

^, power 119

^-1, reciprocal 129

:=, assign 131 !. factorial 124

.^, dot power 120

.*, dot multiplication 120

.+, dot addition 120

.-, dot subtraction 120

.÷, dot division 120

', minute notation 128

", second notation 128

≤, less than or equal 123

©, comment 131

 Δ list(), list difference 55

°, degree notation 128

°, degrees/minutes/seconds 128

), integral *125*

〈, square root 125

, not equal 122

-, subtract 117

÷, divide 118

 Π , product 125

 Σ (), sum 126 \Leftrightarrow , logical double implication 124

⇒, logical implication 123, 134

*, multiply 118

&, append *124*

→, store 130

#, indirection 127

#, indirection operator 137

%, percent 121

+, add 117

<, less than 122

=, equal 122

>, greater than 123

, constraint operator 130

≥, greater than or equal 123

Numerics

0b, binary indicator 131 0h, hexadecimal indicator 131 10^(), power of ten 129 2-sample F Test 39 ▶approxFraction() 10

Α

abs(), absolute value 6 absolute value

template for 3

add, + 117

amortization table, amortTbl() 6, 12

amortTbl(), amortization table 6, 12

and, Boolean operator 6

angle, angle() 7

angle(), angle 7

ANOVA, one-way variance analysis 7

ANOVA2way, two-way variance

analysis 8

Ans, last answer 9

answer (last), Ans 9

append, & 124

approx(), approximate 10

approximate, approx() 10

approxRational() 10

arccos() 10

arccosh() 10

arccosine, cos⁻¹() 20

arccot() 10

arccoth() 11 arccsc() 11

arccsch() 11

arcsec() 11

arcsech() 11

arcsin() 11

arcsine, sin-1() 94

arcsinh() 11

arctan() 11

arctangent, tan⁻¹() 102

arctanh() 11

arguments in TVM functions 108

augment(), augment/concatenate

11

augment/concatenate, augment()

11

average rate of change, avgRC() 12 avgRC(), average rate of change 12

В	conjugate, conj() 18
▶Base10, display as decimal integer	conj(), complex conjugate 18
13	constraint operator " " 130
▶Base16, display as hexadecimal 14	constraint operator, order of
Base2, display as binary 12	evaluation <i>136</i>
binary	construct matrix, constructMat() 18
display, ▶Base2 12	constructMat(), construct matrix 18
indicator, 0b 131	convert
binomCdf() 14	•Grad <i>44</i>
binomPdf() 14	▶Rad <i>81</i>
Boolean operators	copy variable or function, CopyVar
and 6	18
nand 66	correlation matrix, corrMat() 19
nor <i>69</i>	corrMat(), correlation matrix 19
not <i>70</i>	cos(), cosine 19
or 73	cos ⁻¹ , arccosine <i>20</i>
⇔ 124	cosh(), hyperbolic cosine 21
	cosh ⁻¹ (), hyperbolic arccosine 21
	cosine, cos() 19
<i>⇒</i> 123, 134	cot(), cotangent 21
_	cot ⁻¹ (), arccotangent 22
C	cotangent, cot() 21
χ^2_2 2way 15	coth(), hyperbolic cotangent 22
χ^2 Cdf() 16	coth ⁻¹ (), hyperbolic arccotangent 22
χ^2 Cdf() 16 χ^2 GOF 16 χ^2 Pdf() 16	count days between dates, dbd() 26
χ^2 Pdf() 16	count items in a list conditionally,
Cdf() 36	countif() 23
ceiling, ceiling() 14, 15, 23	count items in a list, count() 22
ceiling(), ceiling 14	count(), count items in a list 22
centralDiff() 15	countif(), conditionally count items
char(), character string 15	in a list 23
character string, char() 15	cPolyRoots() 23
characters	cross product, crossP() 23
numeric code, ord() 73	crossP(), cross product 23
string, char() 15	csc(), cosecant 24
clear	csc ⁻¹ (), inverse cosecant 24
error, ClrErr 17	csch(), hyperbolic cosecant 24
ClearAZ 16	csch ⁻¹ (), inverse hyperbolic cosecant
ClrErr, clear error 17	24
colAugment 17	cubic regression, CubicReg 25
colDim(), matrix column dimension	CubicReg, cubic regression 25
17	cumulative sum, cumulativeSum()
colNorm(), matrix column norm 17	25
combinations, nCr() 67	cumulativeSum(), cumulative sum
comment, © 131	25
completeSquare(), complete square	Cycle, cycle 26
18	cycle, Cycle 26
complex	-, -, -, -, -, -, -,

Cylind, display as cylindrical vector 26 cylindrical vector display, ▶Cylind 26 D d (), first derivative 124 days between dates, dbd() 26 dbd(), days between dates 26 ▶DD, display as decimal angle 27 ▶Decimal, display result as decimal 27 decimal angle display, ▶DD 27 integer display, ▶DD 27 integer display, ▶Base10 13 Define 27 Define LibPriv 28 Define LibPriv 28 Define, define 27 define, Define 27 defining private function or program 28 public function or program 28 definite integral template for 5 degree notation, ° 128 degree/minute/second display, ▶DMS 31	cylindrical vector, ▶Cylind 26 decimal angle, ▶DD 27 decimal integer, ▶Base10 13 degree/minute/second, ▶DMS 33 hexadecimal, ▶Base16 14 polar vector, ▶Polar 75 rectangular vector, ▶Sphere 97 display data, Disp 30 distribution functions binomCdf() 14 binomPdf() 14 χ²2way() 15 χ²Cdf() 16 χ²Pdf() 16 lnvχ²() 48 invNorm() 48 invt() 48 normCdf() 69 poissCdf() 74 poissPdf() 74 tCdf() 104 tPdf() 105 divide, ÷ 118 ▶DMS, display as degree/minute/ second 31
degree/minute/second notation 128 delete void elements from list 29 deleting variable, DelVar 29 deltaList() 29 DelVar, delete variable 29 delVoid(), remove void elements 29 derivatives first derivative, d() 124 numeric derivative, nDeriv() 68 numeric derivative, nDerivative() 67 det(), matrix determinant 29 diag(), matrix diagonal 30 dim(), dimension 30 dimension, dim() 30 Disp, display data 30 display as binary, ▶Base2 12	dot addition, .+ 120 division, .÷ 120 multiplication, .* 120 power, .^ 120 product, dotP() 31 subtraction, 120 dotP(), dot product 31 E e exponent template for 2 e to a power, e^() 31, 35 e^(), e to a power 31 E, exponent 127 eff), convert nominal to effective rate 32 effective rate, eff() 32 eigenvalue, eigVI() 32
	- J

eigenvector, eigvc() 32	r
eigVc(), eigenvector <i>32</i>	factor, factor() 36
eigVI(), eigenvalue 32	factor(), factor 36
else if, Elself 33	factorial, ! 124
else, Else 45	Fill, matrix fill 36
Elself, else if 33	financial functions, tvmFV() 107
empty (void) elements 132	financial functions, tvml() 108
end	financial functions, tvmN() 108
for, EndFor 38	financial functions, tvmPmt() 108
function, EndFunc 40	financial functions, tvmPV() 108
if, EndIf 45	first derivative
loop, EndLoop <i>60</i>	template for 5
program, EndPrgm <i>77</i>	FiveNumSummary 37
try, EndTry 106	floor, floor() 37
while, EndWhile 112	floor(), floor 37
end function, EndFunc 40	For 38
end if, EndIf 45	For, for 38
end loop, EndLoop 60	for, For <i>38</i>
end while, EndWhile 112	format string, format() 38
EndTry, end try 106	format(), format string 38
EndWhile, end while 112	fpart(), function part 38
EOS (Equation Operating System)	fractions
136	propFrac 78
equal, = 122	template for 1
Equation Operating System (EOS)	freqTable() 39
136	frequency() 39
error codes and messages 138	Frobenius norm, norm() 69
errors and troubleshooting	Func, function 40
clear error, ClrErr 17	Func, program function 40
pass error, PassErr 74	functions
euler(), Euler function 34	part, fpart() <i>38</i>
evaluate polynomial, polyEval() 75	program function, Func 40
evaluation, order of 136	user-defined 27
exclusion with " " operator 130	functions and variables
Exit, exit 34	copying 18
exit, Exit 34	
exp(), e to a power 35	G
exponent, E 127	^g , gradians <i>128</i>
exponential regession, ExpReg 35	gcd(), greatest common divisor 40
exponents	geomCdf() 41
template for 1	geomPdf() 41
expr(), string to expression 35	get/return
ExpReg, exponential regession 35	denominator, getDenom() 41
expressions string to expression, expr() 35	number, getNum() 43
string to expression, expr() 33	variables injformation,
	getVarInfo() 41, 43
	gervanno() 41, 43

getDenom(), get/return	integer divide, intDiv() 47
denominator 41	integer part, iPart() 49
getLangInfo(), get/return language	integer, int() 47
information 41	integral, \rangle 125
getLockInfo(), tests lock status of	interpolate(), interpolate 48
variable or variable group 42	$Inv\chi^{2}()$ 48
getMode(), get mode settings 42	inverse cumulative normal
getNum(), get/return number 43	distribution (invNorm() 48
getType(), get type of variable 43	inverse, ^-1 129
getVarInfo(), get/return variables	invF() 48
information 43	invNorm(), inverse cumulative
go to, Goto 44	normal distribution) 48
Goto, go to 44	invt() 48
, convert to gradian angle 44	iPart(), integer part 49
gradian notation, ^g 128	irr(), internal rate of return
greater than or equal, ≥ 123	internal rate of return, irr() 49
greater than, > 123	isPrime(), prime test 49
greatest common divisor, gcd() 40	isVoid(), test for void 49
groups, locking and unlocking 57,	
110	L
groups, testing lock status 42	label, Lbl 50
	language
Н	get language information 41
hexadecimal	Lbl, label 50
display, ▶Base16 14	lcm, least common multiple 50
indicator, 0h 131	least common multiple, lcm 50
hyperbolic	left, left() 50
arccosine, cosh ⁻¹ () <i>21</i>	left(), left 50
arcsine, sinh ⁻¹ () <i>95</i>	length of string 30
arctangent, tanh ⁻¹ () <i>103</i>	less than or equal, ≤ 123
cosine, cosh() 21	less than, 122
sine, sinh() <i>95</i>	LibPriv 28
tangent, tanh() 103	LibPub 28
	library
1	create shortcuts to objects 51
identity matrix, identity() 45	libShortcut(), create shortcuts to
identity(), identity matrix 45	library objects 51
If, if 45	linear regression, LinRegAx 52
if, If 45	linear regression, LinRegBx 51, 52
ifFn() 46	LinRegBx, linear regression 51
imag(), imaginary part 46	LinRegMx, linear regression 52
imaginary part, imag() 46	LinRegtIntervals, linear regression
indirection operator (#) 137	52
indirection, # 127	LinRegtTest 54
inString(), within string 47	linSolve() 55
int(), integer 47	list to matrix, list mat() 55
intDiv(), integer divide 47	list, conditionally count items in 23

list, count items in 22	M
list mat(), list to matrix 55	mat list(), matrix to list 60
lists	matrices
augment/concatenate,	augment/concatenate,
augment() 11	augment() <i>11</i>
cross product, crossP() 23	column dimension, colDim() 17
cumulative sum,	column norm, colNorm() 17
cumulativeSum() 25	cumulative sum,
difference, Δ list() 55	cumulativeSum() 25
differences in a list, Δ list() 55	determinant, det() 29
dot product, dotP() 31	diagonal, diag() 30
empty elements in 132	dimension, dim() 30
list to matrix, list mat() 55	dot addition, .+ 120
matrix to list, mat list() 60	dot division, .÷ 120
maximum, max() <i>61</i>	dot multiplication, .* 120
mid-string, mid() 62	dot power, .^ <i>120</i>
minimum, min() 63	dot subtraction, 120
new, newList() 67	eigenvalue, eigVl() <i>32</i>
product, product() 77	eigenvector, eigVc() <i>32</i>
sort ascending, SortA 96	filling, Fill 36
sort descending, SortD 97	identity, identity() 45
summation, sum() 100, 101 In(), natural logarithm 55	list to matrix, list▶mat() 55
LnReg, logarithmic regression 56	lower-upper decomposition, LU
local variable, Local 57	60
local, Local <i>57</i>	matrix to list, mat list() 60
Local, local variable 57	maximum, max() 61
Lock, lock variable or variable group	minimum, min() 63
57	new, newMat() 68
locking variables and variable	product, product() 77
groups 57	QR factorization, QR 78
Log	random, randMat() 81
template for 2	reduced row echelon form,
logarithmic regression, LnReg 56	rref() 88
logarithms 55	row addition, rowAdd() 87
logical double implication, \Leftrightarrow 124	row dimension, rowDim() 88
logical implication, \Rightarrow 123, 134	row echelon form, ref() 83
logistic regression, Logistic 58	row multiplication and addition
logistic regression, LogisticD 59	mRowAdd() <i>64</i> row norm, rowNorm() <i>88</i>
Logistic, logistic regression 58	row operation, mRow() 64
LogisticD, logistic regression 59	row swap, rowSwap() 88
Loop, loop 60	submatrix, subMat() 100, 101
loop, Loop 60	summation, sum() 100, 101
LU, matrix lower-upper	transpose, ^T 101
decomposition 60	matrix (1 × 2)
	template for 4
	matrix (2 × 1)

template for 4	negation, entering negative
matrix (2 × 2)	numbers 137
template for 3	net present value, npv() 71
matrix (m × n)	new
template for 4	list, newList() 67
matrix to list, mat list() 60	matrix, newMat() 68
max(), maximum 61	newList(), new list 67
maximum, max() 61	newMat(), new matrix 68
mean, mean() 61	nfMax(), numeric function
mean(), mean <i>61</i>	maximum 68
median, median() 61	nfMin(), numeric function minimum
median(), median 61	68
medium-medium line regression,	nInt(), numeric integral 68
MedMed 62	nom), convert effective to nominal
MedMed, medium-medium line	rate <i>69</i>
regression 62	nominal rate, nom() 69
mid(), mid-string 62	nor, Boolean operator 69
mid-string, mid() 62	norm(), Frobenius norm 69
min(), minimum 63	normal distribution probability,
minimum, min() 63	normCdf() 69
minute notation, ' 128	normCdf() 69
mirr(), modified internal rate of	normPdf() 69
return 63	not equal, 122
mixed fractions, using propFrac(>	not, Boolean operator 70
with <i>78</i>	nPr(), permutations 70
mod(), modulo <i>64</i>	npv(), net present value 71
mode settings, getMode() 42	nSolve(), numeric solution 71
modes	nth root
setting, setMode() 91	template for 1
modified internal rate of return,	numeric
mirr() <i>63</i>	derivative, nDeriv() 68
modulo, mod() <i>64</i>	derivative, nDerivative() 67
mRow(), matrix row operation 64	integral, nInt() 68
mRowAdd(), matrix row	solution, nSolve() 71
multiplication and addition 64	
Multiple linear regression t test 65	0
multiply, * 118	objects
MultReg 64	create shortcuts to library 51
MultRegIntervals() 65	OneVar, one-variable statistics 72
MultRegTests() 65	one-variable statistics, OneVar 72
	operators
N	order of evaluation 136
nand, Boolean operator 66	or (Boolean), or 73
natural logarithm, In() 55	or, Boolean operator 73
nCr(), combinations 67	ord(), numeric character code 73
nDerivative(), numeric derivative 67	

r	clear error, Circii 17
P▶Rx(), rectangular x coordinate 73	display I/O screen, Disp 30
P▶Ry(), rectangular y coordinate 74	end program, EndPrgm 77
pass error, PassErr 74	end try, EndTry 106
PassErr, pass error 74	try, Try 106
Pdf() 38	proper fraction, propFrac 78
percent, % 121	propFrac, proper fraction 78
permutations, nPr() 70	_
piecewise function (2-piece)	Q
template for 2	QR factorization, QR 78
piecewise function (N-piece)	QR, QR factorization 78
template for 2	quadratic regression, QuadReg 79
piecewise() 74	QuadReg, quadratic regression 79
poissCdf() 74	quartic regression, QuartReg 79
poissPdf() 74	QuartReg, quartic regression 79
Polar, display as polar vector 75	3 7 3
polar	R
coordinate, R▶Pθ() 80	
coordinate, R▶Pr() 80	r, radian 128
vector display, ▶Polar 75	R▶Pθ(), polar coordinate 80 R▶Pr(), polar coordinate 80
polyEval(), evaluate polynomial 75	Rad, convert to radian angle 81
polynomials	radian, ^r 128
evaluate, polyEval() 75	rand(), random number 81
random, randPoly() 82	randBin, random number 81
PolyRoots() 75	randint(), random integer 81
power of ten, 10 ⁽) 129	randMat(), random matrix 81
power regression, PowerReg 75, 76,	randNorm(), random norm 81
84, 85, 104	random
power, ^ <i>119</i>	matrix, randMat() <i>81</i>
PowerReg, power regression 76	norm, randNorm() 81
Prgm, define program 77	number seed, RandSeed 82
prime number test, isPrime() 49	polynomial, randPoly() 82
probability densiy, normPdf() 69	random sample 82
prodSeq()_77	randPoly(), random polynomial 82
product (Π)	randSamp() 82
template for 4	RandSeed, random number seed 82
product, Π () 125	real, real() 82
product, product() 77	real(), real 82
product(), product 77	reciprocal, ^-1 129
programming	Rect, display as rectangular vector
define program, Prgm 77	82
display data, Disp 30	rectangular x coordinate, P▶Rx() 73
pass error, PassErr 74	rectangular y coordinate, PPRy() 74
programs	rectangular-vector display, ▶Rect 82
defining private library 28	reduced row echelon form, rref() 88
defining public library 28	ref(), row echelon form 83
programs and programming	regressions
	3

cubic, CubicReg 25	second notation, " 128
exponential, ExpReg 35	seq(), sequence 90
linear regression, LinRegAx 52	seqGen() 90
linear regression, LinRegBx 51,	seqn() 91
52	sequence, seq() 90, 91
logarithmic, LnReg 56	set
Logistic 58	mode, setMode() 91
logistic, Logistic 59	setMode(), set mode 91
medium-medium line, MedMed	settings, get current 42
62	shift, shift() 92
MultReg 64	shift(), shift 92
power regression, PowerReg <i>75</i> ,	sign, sign() 93
76, 84, 85, 104	sign(), sign 93
quadratic, QuadReg 79	simult(), simultaneous equations 93
quartic, QuartReg 79	simultaneous equations, simult() 93
sinusoidal, SinReg <i>96</i>	sin(), sine 94
remain(), remainder 84	sin ⁻¹ (), arcsine <i>94</i>
remainder, remain() 84	sine, sin() 94
remove	sinh(), hyperbolic sine 95
void elements from list 29	sinh ⁻¹ (), hyperbolic arcsine <i>95</i>
Request 84	SinReg, sinusoidal regression 96
RequestStr 85	Σ Int() 126
result values, statistics 99	sinusoidal regression, SinReg 96
results, statistics 98	SortA, sort ascending 96
Return, return 85	SortD, sort descending 97
return, Return 85	sorting
right, right() 18, 34, 48, 85, 86, 111	ascending, SortA 96
right(), right 85	descending, SortD 97
rk23(), Runge Kutta function 86	▶Sphere, display as spherical vector
rotate, rotate() 86	97
rotate(), rotate 86	spherical vector display, ▶Sphere 97
round, round() 87	ΣPrn() <i>127</i>
round(), round 87	sqrt(), square root 97
row echelon form, ref() 83	square root
rowAdd(), matrix row addition 87	template for 1
rowDim(), matrix row dimension 88	square root, $\sqrt{()}$ 97, 125
rowNorm(), matrix row norm 88	standard deviation, stdDev() 99, 110
rowSwap(), matrix row swap 88	stat.results 98
rref(), reduced row echelon form 88	stat.values 99
	statistics
S	combinations, nCr() 67
sec(), secant 89	factorial, ! 124
sec ⁻¹ (), inverse secant 89	mean, mean() <i>61</i>
sech(), hyperbolic secant 89	median, median() 61
sech (), hyperbolic secant 89	one-variable statistics, OneVar
second derivative	72
template for 5	permutations, nPr() 70
template for 5	random norm, randNorm() 81

random number seed, Randseed	sum(), summation 100
82	sumlf() 101
standard deviation, stdDev() 99,	summation, sum() 100
110	sumSeq() 101
two-variable results, TwoVar 109	system of equations (2-equation)
variance, variance() 111	template for 3
stdDevPop(), population standard deviation 99	system of equations (N-equation) template for 3
stdDevSamp(), sample standard	
deviation 99	T
Stop command 100	t test, tTest 106
storing	T, transpose 101
symbol, → 130, 131	tan(), tangent 102
string	tan ⁻¹ (), arctangent <i>102</i>
dimension, dim() 30	tangent, tan() 102
length 30	
string(), expression to string 100	tanh(), hyperbolic tangent 103
strings	tanh ⁻¹ (), hyperbolic arctangent 103 tCdf(), student- t distribution
append, & <i>124</i>	
character code, ord() 73	probability 104 templates
character string, char() 15	absolute value 3
expression to string, string() 100	
format, format() 38	definite integral 5
formatting 38	e exponent 2
indirection, # 127	exponent 1
left, left() 50	first derivative 5
mid-string, mid() 62	fraction 1
right, right() 18, 34, 48, 85, 86,	Log 2
111	matrix $(1 \times 2) 4$
rotate, rotate() 86	matrix (2 × 1) 4
shift, shift() 92	matrix (2 × 2) 3
string to expression, expr() 35	matrix (m × n) 4
using to create variable names	nth root 1
137	piecewise function (2-piece) 2
within, InString 47	piecewise function (N-piece) 2
student-t distribution probability,	product (Π) 4
tCdf() 104	second derivative 5
student-t probability density, tPdf()	square root 1
105	sum (Σ) 4
subMat(), submatrix 100, 101	system of equations (2-equation)
submatrix, subMat() 100, 101	3
substitution with " " operator 130	system of equations (N-
subtract, – 117	equation) 3
$\operatorname{sum}\left(\Sigma\right)$	test for void, isVoid() 49
template for 4	Test_2S, 2-sample F test 39
sum of interest payments 126	Text command 104
sum of principal payments 127	time value of money, Future Value
sum, Σ() 126	107

time value of money, number of 57, 110 payments 108 variance, variance() 111 time value of money, payment varPop() 110 amount 108 varSamp(), sample variance 111 time value of money, present value vectors cross product, crossP() 23 tInterval 2Samp, two-sample t cylindrical vector display, >Cylind confidence interval 105 tInterval. t confidence interval 104 dot product, dotP() 31 unit, unitV() 110 tPdf(), student-t probability density 105 void elements 132 trace() 105 void elements, remove 29 transpose, T 101 void, test for 49 Try, error handling command 106 tTest_2Samp, two-sample t test 107 W tTest. t test 106 warnCodes(), Warning codes 111 TVM arguments 108 warning codes and messages 144 tvmFV() 107 when, when() 111 tvml() 108 when(), when 111 tvmN() 108 While, while 112 tvmPmt() 108 while, While 112 tvmPV() 108 with, | 130 TwoVar, two-variable results 109 within string, inString() 47 two-variable results. TwoVar 109 X U x2, square 119 unit vector, unitV() 110 XNOR 124 unitV(), unit vector 110 xor, Boolean exclusive or 112 unLock, unlock variable or variable group 110 Z unlocking variables and variable groups 110 zInterval_1Prop, one-proportion z user-defined functions 27 confidence interval 113 user-defined functions and zInterval_2Prop, two-proportion z confidence interval 114 programs 28 zInterval 2Samp, two-sample z confidence interval 114 V zInterval, z confidence interval 113 variable zTest 115 creating name from a character zTest_1Prop, one-proportion z test string 137 variable and functions zTest_2Prop, two-proportion z test copying 18 116 variables zTest_2Samp, two-sample z test 116 clear all single-letter 16 delete. DelVar 29 local, Local 57

variables, locking and unlocking 42,

time value of money, Interest 108